• Title/Summary/Keyword: Marine noise

Search Result 485, Processing Time 0.024 seconds

Tension Force Monitoring of Tension Type Ground Anchor Using Optical FBG Sensors (광섬유 센서를 이용한 인장형 그라운드 앵커의 장력측정)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.17-26
    • /
    • 2011
  • Ground anchor method is one of the most popular reinforcing technology in Korea. For the sound monitoring of slope reinforced by permanent anchor for a long period, monitoring the tension force of ground anchor is very important. However, special technology except conventional load cell has not been developed for this purpose. In this paper, a new method is described to replace the conventional strain gauge and V.W. type load cell which has been commonly used as a prestress force monitoring tool for a short-term and long-term. Four 11.5 m long strain detectable tension type anchors were made using FBG sensor embedded tendon since FBG sensor is smaller than strain gauge type load cell and does not have noise from electromagnetic wave. Each two set strain detectable tension type anchors were installed into the different ground conditions, i.e., soft rock and weathered granite soil. Prestress force of ground anchor was monitored during the loading-unloading step from in-situ pullout test using proposed FBG sensor embedded in the tendon and the conventional load cell Test results show that the prestress force monitored from FBG sensor may well be used practically, for it almost matches with that measured from expensive load cell.

Developing a General Recycling Method of FRP Boats (FRP선박의 범용 재활용을 위한 재처리시스템의 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • For several decades, many researchers have been involved in developing recycling methods for FRP boats. There are four basic classes of recycling covered in the literature. Despite of environmental problems(safety hazards), mechanical recycling of FRP boats, which involves shredding and grinding of the scrap FRP, is one of the simpler and more technically proven methods than incineration, reclamation or chemical ones. Because FRP is made up of reinforced fiber glass, it is very difficult to break into pieces. It also leads to secondary problem in recycling process, such as air pollution and unacceptable shredding noise level. Another serious problem of mechanical FRP recycling is very limited reusable applications for the residue. This study is to propose a new and efficient method which is more wide range applications and environment friendly waste FRP regenerating system. New system is added with the cyclone sorting machine for airborne pollutions and modified cutting system for several glass fiber chips sizes. It also has shown the FRP chip fiber-reinforced concrete and fiber-reinforced secondary concrete applications with the waste FRP boat to be more eligible than existing recycling method.

  • PDF

X-Band FMCW RADAR Signal Processing for small ship (소형선박용 X-Band FMCW 레이더 신호처리부 설계 및 구현)

  • Kim, Jeong-Yeon;Chong, Kil-To;Kim, Tae-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3121-3129
    • /
    • 2009
  • Conventional marine radar systems utilize pulse radar which is capable of high-power transmissions and is effective for remote detection purposes. A pulse radar is most commonly used on medium or large vessels due to its expensive installation and maintenance costs. I propose the use of a Frequency Modulated Continuous Wave (FMCW) radar system operated at low-power and high-resolution instead of the conventional pulse-radar based system. The transmitted and received signals of the FMCW radar system were theoretically analyzed and radar signal processing design and simulation experiments were performed to detect the range and speed. Intermediate Frequency (IF) signal mixed with virtual transmit and receive signals were generated to perform FMCW radar signal processing simulations where the IF signal underwent noise reduction through a lowpass filter. The maximum frequency was derived through the sample interval of the FFT size instead of using A/D converter. This maximum frequency was used to get the frequency range and frequency speed which were in turn used to calculate the range and speed. The virtual beat frequency generated using MATLAB is utilized to analyze the beat frequency used in the actual FMCW radar system signal processing. The differences in the range and speed of the beat frequency signals are processed and analyzed.

Transfer Function Model Forecasting of Sea Surface Temperature at Yeosu in Korean Coastal Waters (전이함수모형에 의한 여수연안 표면수온 예측)

  • Seong, Ki-Tack;Choi, Yang-Ho;Koo, Jun-Ho;Lee, Mi-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.526-534
    • /
    • 2014
  • In this study, single-input transfer function model is applied to forecast monthly mean sea surface temperature(SST) in 2010 at Yeosu in Korean coastal waters. As input series, monthly mean air temperature series for ten years(2000-2009) at Yeosu in Korea is used, and Monthly mean SST at Yeosu station in Korean coastal waters is used as output series(the same period of input). To build transfer function model, first, input time series is prewhitened, and then cross-correlation functions between prewhitened input and output series are determined. The cross-correlation functions have just two significant values at time lag at 0 and 1. The lag between input and output series, the order of denominator and the order of numerator of transfer function, (b, r, s) are identified as (0, 1, 0). The selected transfer function model shows that there does not exist the lag between monthly mean air temperature and monthly mean SST, and that transfer function has a first-order autoregressive component for monthly mean SST, and that noise model was identified as $ARIMA(1,0,1)(2,0,0)_{12}$. The forecasted values by the selected transfer function model are generally $0.3-1.3^{\circ}C$ higher than actual SST in 2010 and have 6.4 % mean absolute percentage error(MAPE). The error is 2 % lower than MAPE by ARIMA model. This implies that transfer function model could be more available than ARIMA model in terms of forecasting performance of SST.

Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data (KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1383-1398
    • /
    • 2018
  • Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal regions. Synthetic Aperture Radar (SAR) is capable to produce high resolution wind field data. KOMPSAT-5 is the first Korean satellite equipped with X-band SAR instrument and is able to retrieve the sea surface wind. This study presents the validation results of sea surface wind derived from the KOMPSAT-5 backscattering coefficient data for the first time. We collected 18 KOMPSAT-5 ES mode data to produce a matchup database collocated with buoy stations. In order to calculate the accurate wind speed, we preprocessed the SAR data, including land masking, speckle noise reduction, and ship detection, and converted the in-situ wind to 10-m neutral wind as reference wind data using Liu-Katsaros-Businger (LKB) model. The sea surface winds based on XMOD2 show root-mean-square errors of about $2.41-2.74m\;s^{-1}$ depending on backscattering coefficient conversion equations. In-depth analyses on the wind speed errors derived from KOMPSAT-5 backscattering coefficient data reveal the existence of diverse potential error factors such as image quality related to range ambiguity, discrete and discontinuous distribution of incidence angle, change in marine atmospheric environment, impacts on atmospheric gravity waves, ocean wave spectrum, and internal wave.

Electromagnetic Interference of GMDSS MF/HF Band by Offshore Wind Farm (해상풍력 발전단지에 의한 GMDSS MF/HF 대역 전자파 간섭 영향 연구)

  • Oh, Seongwon;Park, Tae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.47-52
    • /
    • 2021
  • Recently, the share of wind power in energy markets has sharply increased with the active development of renewable energy internationally. In particular, large-scale wind farms are being developed far from the coast to make use of abundant wind resources and to reduce noise pollution. In addition to the electromagnetic interference (EMI) caused by offshore wind farms to coastal or air surveillance radars, it is necessary to investigate the EMI on global maritime distress and safety system (GMDSS) communications between ship and coastal stations. For this purpose, this study investigates whether the transmitted field of MF/HF band from a ship would be subject to interference or attenuation below the threshold at a coastal receiver. First, using geographic information system digital maps and 3D CAD models of wind turbines, the area of interest is electromagnetically modeled with patch models. Although high frequency analysis methods like Physical Optics are appropriate to analyze wide areas compared to its wavelength, the high frequency analysis method is first verified with an accurate low frequency analysis method by simplifying the surrounding area and turbines. As a result, the received wave power is almost the same regardless of whether the wind farms are located between ships and coastal stations. From this result, although wind turbines are large structures, the size is only a few wavelengths, so it does not interfere with the electric field of MF/HF distress communications.

A Study on the Improvement of Color Detection Performance of Unmanned Salt Collection Vehicles Using an Image Processing Algorithm (이미지 처리 알고리즘을 이용한 무인 천일염 포집장치의 색상 검출 성능 향상에 관한 연구)

  • Kim, Seon-Deok;Ahn, Byong-Won;Park, Kyung-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1054-1062
    • /
    • 2022
  • The population of Korea's solar salt-producing regions is rapidly aging, resulting in a decrease in the number of productive workers. In solar salt production, salt collection is the most labor-intensive operation because existing salt collection vehicles require human operators. Therefore, we intend to develop an unmanned solar salt collection vehicle to reduce manpower requirements. The unmanned solar salt collection vehicle is designed to identify the salt collection status and location in the salt plate via color detection, the color detection performance is a crucial consideration. Therefore, an image processing algorithm was developed to improve color detection performance. The algorithm generates an around-view image by using resizing, rotation, and perspective transformation of the input image, set the RoI to transform only the corresponding area to the HSV color model, and detects the color area through an AND operation. The detected color area was expanded and noise removed using morphological operations, and the area of the detection region was calculated using contour and image moment. The calculated area is compared with the set area to determine the location case of the collection vehicle within the salt plate. The performance was evaluated by comparing the calculated area of the final detected color to which the algorithm was applied and the area of the detected color in each step of the algorithm. It was confirmed that the color detection performance is improved by at least 25-99% for salt detection, at least 44-68% for red color, and an average of 7% for blue and an average of 15% for green. The proposed approach is well-suited to the operation of unmanned solar salt collection vehicles.

The Study of Digitalization of Analog Gauge using Image Processing (이미지 처리를 이용한 아날로그 게이지 디지털화에 관한 연구)

  • Seon-Deok Kim;Cherl-O Bae;Kyung-Min Park;Jae-Hoon Jee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.389-394
    • /
    • 2023
  • In recent years, use of machine automation is rising in the industry. Ships also obtain machine condition information from sensor as digital information. However, on ships, crew members regularly surveil the engine room to check the condition of equipment and their information through analog gauges. This is a time-consuming and tedious process and poses safety risks to the crew while on surveillance. To address this, engine room surveillance using an autonomous mobile robot is being actively explored as a solution because it can reduce time, costs, and the safety risks for crew. Analog gauge reading using an autonomous mobile robot requires digitization for the robot to recognize the gauge value. In this study, image processing techniques were applied to achieve this. Analog gauge images were subjected to image preprocessing to remove noise and highlight their features. The center point, indicator point, minimum value and maximum value of the analog gauge were detected through image processing. Through the straight line connecting these points, the angle from the minimum value to the maximum value and the angle from the minimum value to indicator point were obtained. The obtained angle is digitized as the value currently indicated by the analog gauge through a formula. It was confirmed from the experiments that the digitization of the analog gauge using image processing was successful, indicating the equivalent current value shown by the gauge. When applied to surveillance robots, this algorithm can minimize safety risks and time and opportunity costs of crew members for engine room surveillance.

Photochemical/Biophysical Properties of Proteorhodopsin and Anabaena Sensory Rhodopsin in Various Physical Environments (막 단백질인 Proteorhodopsin과 Anabaena Sensory Rhodopsin의 다양한 측정 환경에 따른 광화학/생물리학적 특성)

  • Choi, Ah-Reum;Han, Song-I;Chung, Young-Ho;Jung, Kwang-Hwan
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Rhodopsin is a membrane protein with seven transmembrane region which contains a retinal as its chromophore. Although there have been recently reports on various photo-biochemical features of rhodopsins by a wide range of purifying and measurement methods, there was no actual comparison related to the difference of biochemical characteristics according to their physical environment of rhodopsins. First, proteorhodopsin (PR) was found in marine proteobacteria whose function is known for pumping proton using light energy. Second one is Anabaena sensory rhodopsin (Nostoc sp.) PCC7120 (ASR) which belongs to eubacteria acts as sensory regulator since it is co-expressed with transducer 14 kDa in an operon. In this study, we applied two types of rhodopsins (PR and ASR) to various environmental conditions such as in Escherichia coli membranes, membrane in acrylamide gel, in DDM (n-dodecyl-${\beta}$-D-maltopyranoside), OG (octyl-${\beta}$-D-glucopyranoside), and reconstituted with DOPC (1,2-didecanoyl-sn-glycero-3-phosphocholine). According to the light-induced difference spectroscopy, rhodopsins in 0.02% DDM clearly showed photointermediates like M, and O states which respond to the different wavelengths, respectively and showed the best signal/noise ratio. The laser-induced difference spectra showed the fast formation and decay rate of photointermediates in the DDM solubilized samples than gel encapsulated rhodopsin. Each of rhodopsins seemed to be adapted to its surrounding environment.

A Study on the Torsional Vibration Characteristics of Super Large Two Stroke Low Speed Diesel Engines with Tuning Damper (튜닝댐퍼를 갖는 초대형 저속 2행정 디젤엔진의 비틀림진동 특성에 관한 연구)

  • Lee, Don-Chool;Barro, Ronald D.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.64-75
    • /
    • 2009
  • The shipbuilder's requirement for a higher power output rating has led to the development of a super large two stroke low speed diesel engines. Usually a large-sized bore engine ranging from $8{\sim}14$ cylinders, this engine group is capable of delivering power output of more than 100,000 bhp at maximum continuous rating(mcr). Other positive aspects of this engine type include higher thermal efficiency, reliability, durability and mobility. This plays a vital role in meeting the propulsion requirement of vessels, specifically for large container ships, of which speed is a primary concern to become more competitive. Consequently, this also resulted in the modification of engine parameters and new component designs to meet the consequential higher mean effective pressure and higher maximum combustion pressure. Even though the fundamental excitation mechanisms unchanged, torsional vibration stresses in the propulsion shafting are subsequently perceived to be higher. As such, one important viewpoint in the initial engine design is the resulting vibration characteristic expected to prevail on the propulsion shafting system(PSS). This paper investigated the torsional vibration characteristics of these super large engines. For the two node torsional vibration with a nodal point on the crankshaft, a tuning damper is necessary to reduce the torsional stresses on the crankshaft. Hence, the tuning torsional vibration damper design and compatibility to the shafting system was similarly reviewed and analyzed.