• Title/Summary/Keyword: Marine gas turbine

Search Result 60, Processing Time 0.027 seconds

The Effects of Air Injection in Compressor Exit on the Response Performance of a Turbocharged Diesel Engine under the Operating Conditions of Rapid Acceleration. (터보과급디젤기관의 급가속 운전시 압축기출구에의 공기분사가 응답성능에 미치는 영향)

  • 박상규;최낙정
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.110-119
    • /
    • 2000
  • In this paper, an experimental study is carried out under the operating conditions of low speed and rapid acceleration in order to investigate and improve the response characteristics of a turbocharged diesel engine with radial turbine driven by exhaust gas. A rapid acceleration for investigating the response performance is applied to the fuel-pump rack of the engine from 0-10% to 0-40% in steps of 10%, and accelerating time of 1, 2 and 3 seconds is applied to the engine. Further experiment for improving the low speed torque and acceleration performance is also performed by means of injecting air into the inlet manifold at compressor exit during the period of low speed and application of a rapid acceleration. The effects of air injection on the response performance are represented at subjected engine speed with the changes of response performance factors such as air injection pressure, air injection period, accelerating rate, accelerating time and load. From the experimental results obtained throughout this study, it is shown that air injection into the inlet manifold at compressor exit is closely related to the improvement of low speed and acceleration performance of a turbocharged diesel engine.

  • PDF

Effect of Number of Rough Walls on Pressure Drop and Heat Transfer in Roughened Channel (거친 채널에서 거친 벽면의 수가 압력강하와 열전달에 미치는 효과)

  • Kim, M.H.;Bae, S.T.;Ahn, S.W.;Kang, H.K.;Kim, C.D.;Woo, J.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1083-1090
    • /
    • 2005
  • Repeated ribs are used on heat exchange surfaces to promote turbulence and enhance convective heat transfer. Applications include fuel rods of gas-cooled nuclear reactors, inside cavities of turbine blades, and internal surfaces pipes used in heat exchangers. Despite the great number of literature papers, only few experimental data concern detailed distributions of friction factors and heat transfer coefficients in square channels varying the number of rough walls. This issue is tackled by investigating effects of different number of ribbed walls on heat transfer and friction characteristics in square channel. The rough wall have a 45$^{\circ}$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The heat transfer coefficient and friction factor values increase with increasing the number of rough walls.

  • PDF

Application of G-equation to large eddy simulation of turbulent premixed flame around a bluff body inside a cylindrical chamber (G 방정식을 이용한 실린더 챔버 내부 둔각물체 주위의 난류 예 혼합 화염 해석)

  • Choi Chang-Yong;Park Nam-Seob;Ko Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.391-398
    • /
    • 2005
  • In this investigation, turbulent premixed combustion and flame front propagation in a gas turbine combustion chamber is studied. Direct numerical simulation of turbulent reacting flows demands extremely high computational resources, especially in more complicated geometry. The alternative choice may be left for Large Eddy Simulation (LES) by which only large scales are solved directly. In combustion problems, capturing the large scales' behavior without solving the details of small scales is a difficult task. Using a transport equation for description of the flame front propagation and therefore avoiding the calculation of inner flame structure is the basic idea of this study. For this purpose. the so-called G-equation has been used by which any iso-level of the G variable provides the flame location. A comparison with the experiment indicates that the present method can predict a turbulent velocity field and also capture a instantaneous 3-dimensional flame structure.

Investigation of the Forging Process of Exhaust Valve for Large Diesel Engine (대형 디젤엔진용 배기밸브의 단조공정에 관한 연구)

  • Kim, Dong-Kwon;Kim, Dong-Young;Suk, Jhin-Ik;Ryu, Seog-Hyeon;Kim, Dong-Jin;Kim, Byung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.627-632
    • /
    • 2001
  • Nimonic 80A superalloy with high-temperature strength and high corrosion-resistance is used in jet engine for aircraft, gas turbine for power plant and marine diesel engine, etc. To develop the manufacturing process of exhaust valve for large diesel engine using Nimonic 80A, various mechanical tests, such as hot compression, microstructure and hardness test have been performed. This results effectively used to set the reasonable forging conditions while hot forging of Nimonic 80A superalloy. Open die and closed die forging experiments are carried out from ESR ingot and finally get a good shaped exhaust valve product.

  • PDF

Design and Analysis of a Novel Methanol SOFC Combined System for Marine Applications Toward Future Green Shipping Goals

  • Duong Phan Anh;Ryu Bo Rim;Hokeun Kang
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.106-119
    • /
    • 2023
  • Due to global decarbonization movement and tightening of maritime emissions restrictions, the shipping industry is going to switch to alternative fuels. Among candidates of alternative fuel, methanol is promising for decreasing SOx and CO2 emissions, resulting in minimum climate change and meeting the goal of green shipping. In this study, a novel combined system of direct methanol solid oxide fuel cells (SOFC), proton exchange membrane fuel cells (PEMFC), gas turbine (GT), and organic Rankine cycle (ORC) targeted for marine vessels was proposed. The SOFC is the main power generator of the system, whereas the GT and PEMFC could recover waste heat from the SOFC to generate useful power and increase waste heat utilizing efficiency of the system. Thermodynamics model of the combined system and each component were established and analyzed. Energy and exergy efficiencies of subsystems and the entire system were estimated with participation of the first and second laws of thermodynamics. The energy and exergy efficiencies of the overall multigeneration system were estimated to be 76.2% and 30.3%, respectively. The combination of GT and PEMFC increased the energy efficiency by 18.91% compared to the SOFC stand-alone system. By changing the methanol distribution ratio from 0.05 to 0.4, energy and exergy efficiencies decreased by 15.49% and 5.41%, respectively. During the starting up and maneuvering period of vessels, a quick response from the power supply system and propulsion plant is necessary. Utilization of PEMFC coupled with SOFC has remarkable meaning and benefits.

High Temperature Fiber Fragmentation Characteristics of SiC Single-Fiber Composite With Titanium Matrices

  • Matikas, Theodore E.
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.75-87
    • /
    • 2008
  • Aerospace structural applications, along with high performance marine and automotive applications, require high-strength efficiency, which can be achieved using metal matrix composites (MMCs). Rotating components, such as jet-engine blades and gas turbine parts, require materials that maximize strength efficiency and metallurgical stability at elevated temperatures. Titanium matrix composites (TMCs) are well suited in such applications, since they offer an enhanced resistance to temperature effects as well as corrosion resistance, in addition to optimum strength efficiency. The overall behavior of the composite system largly depends on the properties of the interface between fiber and matrix. Characterization of the fiber.matrix interface at operating temperatures is therefore essential for the developemt of these materials. The fiber fragmentation test shows good reproducibility of results in determining interface properties. This paper deals with the evaluation of fiber fragmentation characteristics in TMCs at elevated temperature and the results are compared with tests at ambient temperature. It was observed that tensile testing at $650^{\circ}C$ of single-fiber TMCs led to limited fiber fragmentation behavior. This indicates that the load transfer from the matrix to the fiber occurs due to interfacial friction, arising predominantly from mechanical clamping of the fiber by radial compressive residual and Poisson stresses. The present work also demonstrates that composite processing conditions can significantly affect the nature of the fiber.matrix interface and the resulting fragmentation of the fiber.

A Study on the Minimization of Dent Marks due to Mold Tooth Teeth Generated During Wave Forming of Stainless Steel Wire (STS 316Ti) (스테인리스 스틸 강선(STS 316Ti)의 웨이브 성형 시 발생되는 금형 치절에 의한 찍임 자국 최소화에 관한 연구)

  • Moon, Hyunchol;Bae, Soohan;Sung, Hyokyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.98-106
    • /
    • 2022
  • Among the parts assembled in the gas receiver of a marine engine, the titanium alloy stainless steel (STS 316Ti) wire mesh serving as a filter was broken, and the related part, the turbine fan of the turbocharger, was damaged. In this study, a sample of the grid wire mesh was collected and the cause of breakage was analyzed, and a method of minimizing the dent mark caused by the mold during wire forming, which is one of the most direct causes, was studied. In addition, the optimum mold shape was realized through FEM simulation, and the wire wave molding machine capable of controlling the speed was improved by supplementing the problems of the existing wire wave molding machine, thereby improving durability with minimal dent marks.

Turbulent Heat Transfer and Friction in Four-Wall Convergent/Divergent Square Channels with One Ribbed Wall (한면에 리브가 설치된 4벽면 수축/확대 채널의 난류 열전달과 유체마찰)

  • Ahn, Soo Whan;Lee, Myung Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.773-778
    • /
    • 2015
  • The local heat transfer and pressure drop of developed turbulent flows in convergent/divergent channels with square axial cross-sectional areas were experimentally investigated to improve the channel design, such as a gas turbine cooling system. Square convergent/divergent channels with one ribbed wall were manufactured with a fixed rib height e of 10 mm and a ratio of rib spacing p to height e of 10. The measurement was conducted for Reynolds numbers from 15,000 to 89,000. Convergent, divergent, and straight channels with ratios $D_{ho}/D_{hi}$ of 0.75, 1.33, and 1.0, respectively, are considered. Of the three channel types, the ribbed divergent channel was found to produce the best thermal performance under identical flow rate, pumping power, and pressure loss conditions.

Study on the Effect of Design Parameters of the Vane Type Inertial Separator Using Commercial CFD Code (상용 CFD 프로그램을 사용한 베인형 관성분리기의 설계인자 영향 검토)

  • Lee, Dap-Yeon;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.470-475
    • /
    • 2017
  • Since the intake air of gas turbine engine of marine purpose contains water particles, inertial separator for separating the air and water particles are provided. Saw type and wave type separator are now used to separate inflow water particle from the gas. In this paper, the design parameters of saw type separator are studied by numerical simulations. Using the commercial CFD program, Star-CCM+, Lagrangian-Eulerian method was used to perform the analysis of two phase flow of the mist in the air. This method solves Reynolds-Averaged Navier-Stokes equations in Eulerian framework for the continuous phase, while solves equation of motion for individual particles in Lagrangian framework. Lagrangian multiphase method was applied to monitor the particles of different sizes and shapes and to verify collision between particles by chasing particles. Water particles were injected through injectors located at the inlet of the separator and escape mode was used which assumes that the particles attached on the surface of inertial separator were removed from the simulation, effectively escaping the solution domain. Through the numerical computations with the inlet condition of constant water particle size in the wetness fraction of 85%, efficiency of eliminating the water particle and the pressure drop between the inlet and outlet were examined.

Development of Interlocking Signal Simulator for Verification of Naval Warship Engineering Control Logics (함정 통합기관제어체계의 제어로직 검증을 위한 연동신호 시뮬레이터 개발)

  • Lee, Hunseok;Son, Nayoung;Shim, Jaesoon;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1103-1109
    • /
    • 2021
  • ECS is a control device so that the warship can perform the mission stably by controlling and monitoring the entire propulsion system. As the recent provisions of the warship, it's propelling system is complicated than past, as the demand performance and mission of the warships are diverse. In accordance with the complicated propulsion system configuration, the demand for automatic control function of the ECS is increasing for convenient and stable propulsion system control for convenient and stable. As a result, verification of ECS stability and reliability is required. In this paper, we develop an interlocking signal simulator for verifying ECS control logic and communication protocol for warship with CODLOG propulsion systems. The simulator developed was implemented to simulate a signal of gas turbine, propulsion motors, diesel generator and 11 kinds of auxiliary equipment. The reliability of ECS was verified through the ECS communication program and the I/O signal static test with the simulator.