DOI QR코드

DOI QR Code

한면에 리브가 설치된 4벽면 수축/확대 채널의 난류 열전달과 유체마찰

Turbulent Heat Transfer and Friction in Four-Wall Convergent/Divergent Square Channels with One Ribbed Wall

  • 안수환 (경상대학교 해양산업연구소 기계시스템공학과) ;
  • 이명성 (경상대학교 해양산업연구소 기계시스템공학과)
  • Ahn, Soo Whan (Dept. of Mechanical & System Engineering, Institute of Marine Industry, Gyeongsang National University) ;
  • Lee, Myung Sung (Dept. of Mechanical & System Engineering, Institute of Marine Industry, Gyeongsang National University)
  • 투고 : 2014.10.29
  • 심사 : 2015.08.21
  • 발행 : 2015.10.01

초록

가스터빈 냉각 장치인 블레이드 등과 같은 산업 설계를 개선하기 위해 사각 수축 및 확대채널에서 축방향의 거리에 따라 국부 난류 열전달과 압력강하에 대해 실험적으로 조사하였다. 수축 및 확대채널의 한 면에만 리브($10mm{\times}100mm{\times}5mm(t)$)를 연속적으로 배치하였고 충돌 각은 $90^{\circ}$로 피치(p)/높이(e)의 비는 10이 되도록 하였다. 수축채널의 수력직경비($D_{ho}/D_{hi}$)는 0.75, 확대채널의 수력직경비는 1.33 그리고 직선채널은 1.00이다. 열성능 비교를 위해 3가지 보편적인 제약 조건을 채택 하였다. 즉 동일 유량, 동일 펌프 동력 그리고 동일한 압력 강하이다. 3가지 조건모두 확대 채널에서 우수한 열 성능을 보였다.

The local heat transfer and pressure drop of developed turbulent flows in convergent/divergent channels with square axial cross-sectional areas were experimentally investigated to improve the channel design, such as a gas turbine cooling system. Square convergent/divergent channels with one ribbed wall were manufactured with a fixed rib height e of 10 mm and a ratio of rib spacing p to height e of 10. The measurement was conducted for Reynolds numbers from 15,000 to 89,000. Convergent, divergent, and straight channels with ratios $D_{ho}/D_{hi}$ of 0.75, 1.33, and 1.0, respectively, are considered. Of the three channel types, the ribbed divergent channel was found to produce the best thermal performance under identical flow rate, pumping power, and pressure loss conditions.

키워드

참고문헌

  1. Ahn, S. W., Kang, H. K., Bae, S. T. and Lee, D. H., 2008, "Heat Transfer and Friction Factor in a Square Channel with One, Two, and Four Ribbed Walls," ASME Journal of Turbomachinery, Vol. 130, 034501-5, pp. 1-5.
  2. Park, J. S., Han, J. C., Huang, J. C., Ou, Y. S. and Boyle, R. J., 1992, "Heat Transfer Performance Comparisons of Five Different Rectangular Channels with Parallel Angled Ribs," International Journal of Heat and Mass Transfer, Vol. 35, pp. 2891-2903 https://doi.org/10.1016/0017-9310(92)90309-G
  3. Wang, B., Tao, W. Q., Wang, Q. W. and Wong, T. T., 2001, "Experimental Study of Developing Turbulent Flow and Heat Transfer in Ribbed Convergent/Divergent Square Ducts," International Journal of Heat and Fluid Flow, Vol. 22, pp. 603-613. https://doi.org/10.1016/S0142-727X(01)00127-8
  4. Lee, M. S., Jeong, S. S., Ahn, S. W. and Han, J. C., 2013, "Turbulent Heat Transfer and Friction in Rectangular Convergent/divergent Channels with Ribs on One Wall," AIAA Journal of Thermophysics and Heat Transfer, Vol. 27, pp. 660-667. https://doi.org/10.2514/1.T4144
  5. Kline, S. J. and McClintock, F. A., 1953. "Describing Uncertainty in Single Sample Experiments," Mechanical Engineering, Vol.75, pp. 3-8.
  6. Kays, W. M. and Crawford, M.E., 1990. "Convective Heat and Mass Transfer," 2nd, McGraw-Hill, NY.
  7. White, F. M., 1991, "Viscous Fluid Flow," McGraw-Hill Inc., p. 442.
  8. Dittus, F. W. and Boelter, L. M. K., 1930, "Heat Transfer in Automobile Radiators of the Tubular Type," University of California(Berkeley), Publication of Engineering, Vol. 2, p. 443.