DOI QR코드

DOI QR Code

Design and Analysis of a Novel Methanol SOFC Combined System for Marine Applications Toward Future Green Shipping Goals

  • Duong Phan Anh (Department of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Ryu Bo Rim (Department of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Hokeun Kang (Division of Coast Guard Studies, Korea Maritime and Ocean University)
  • Received : 2022.11.10
  • Accepted : 2023.02.20
  • Published : 2023.04.30

Abstract

Due to global decarbonization movement and tightening of maritime emissions restrictions, the shipping industry is going to switch to alternative fuels. Among candidates of alternative fuel, methanol is promising for decreasing SOx and CO2 emissions, resulting in minimum climate change and meeting the goal of green shipping. In this study, a novel combined system of direct methanol solid oxide fuel cells (SOFC), proton exchange membrane fuel cells (PEMFC), gas turbine (GT), and organic Rankine cycle (ORC) targeted for marine vessels was proposed. The SOFC is the main power generator of the system, whereas the GT and PEMFC could recover waste heat from the SOFC to generate useful power and increase waste heat utilizing efficiency of the system. Thermodynamics model of the combined system and each component were established and analyzed. Energy and exergy efficiencies of subsystems and the entire system were estimated with participation of the first and second laws of thermodynamics. The energy and exergy efficiencies of the overall multigeneration system were estimated to be 76.2% and 30.3%, respectively. The combination of GT and PEMFC increased the energy efficiency by 18.91% compared to the SOFC stand-alone system. By changing the methanol distribution ratio from 0.05 to 0.4, energy and exergy efficiencies decreased by 15.49% and 5.41%, respectively. During the starting up and maneuvering period of vessels, a quick response from the power supply system and propulsion plant is necessary. Utilization of PEMFC coupled with SOFC has remarkable meaning and benefits.

Keywords

Acknowledgement

This research was supported by Korea Institute of Marine Science & Technology Promotion(KIMST) funded by the Ministry of Oceans and Fisheries, Korea(20200520). This research was supported by BB21plus, funded by Busan Metropolitan City and Busan Institute for Talent and Lifelong Education (BIT). This research is the winner of the Marine Fisheries Future Risk Paper Contest sponsored by the Korea Maritime Institute(KMI).

References

  1. Adamson, K. A. and Pearson, P.(2000), "Hydrogen and methanol: A comparison of safety, economics, efficiencies and emissions", J. Power Sources, Vol. 86, pp. 548-555. https://doi.org/10.1016/S0378-7753(99)00404-8
  2. Al-Hamed, K. H. M. and Dincer, I.(2021), "A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives", Energy, Vol. 220, No. 119771.
  3. Al-Hamed, K. H. M. and Dincer, I.(2019), "A new direct ammonia solid oxide fuel cell and gas turbine based integrated system for electric rail transportation", eTransportation, Vol. 2, No. 100027.
  4. Alias, M. S., Kamarudin, S. K., Zainoodin, A. M. and Masdar, M. S.(2020), "Active direct methanol fuel cell: An overview", Int. J. Hydrogen Energy, Vol. 45, pp. 19620-19641. https://doi.org/10.1016/j.ijhydene.2020.04.202
  5. Ashrafi, M., Lister, J. and Gillen, D.(2022), "Toward a harmonization of sustainability criteria for alternative marine fuels", Marit. Transp. Res., Vol. 3, No. 100052.
  6. Atacan, O. F., Ouellette, D. and Colpan, C. O.(2017), "Two-dimensional multiphase non-isothermal modeling of a flowing electrolyte - Direct methanol fuel cell", Int. J. Hydrogen Energy, Vol. 42, pp. 2669-2679. https://doi.org/10.1016/j.ijhydene.2016.06.214
  7. Authayanun, S., Mamlouk, M. and Arpornwichanop, A.(2012), "Maximizing the efficiency of a HT-PEMFC system integrated with glycerol reformer", Int. J. Hydrogen Energy, Vol. 37, pp. 6808-6817. https://doi.org/10.1016/j.ijhydene.2012.01.089
  8. Bicer, Y. and Khalid, F.(2020), "Life cycle environmental impact comparison of solid oxide fuel cells fueled by natural gas, hydrogen, ammonia and methanol for combined heat and power generation", Int. J. Hydrogen Energy, Vol. 45, pp. 3670-3685. https://doi.org/10.1016/j.ijhydene.2018.11.122
  9. Calabriso, A., Cedola, L., Del Zotto, L., Rispoli, F. and Santori, S. G.(2015), "Performance investigation of Passive Direct Methanol Fuel Cell in different structural configurations", J. Clean. Prod., Vol. 88, pp. 23-28. https://doi.org/10.1016/j.jclepro.2014.06.087
  10. Chen, C. C., Jeng, M. S., Leu, C. H., Yang, C. C., Lin, Y. L., King, S. C. and Wu, S. Y.(2011), "Low-level CO in hydrogen-rich gas supplied by a methanol processor for PEMFCs", Chem. Eng. Sci., Vol. 66, pp. 5095-5106. https://doi.org/10.1016/j.ces.2011.07.002
  11. Chen, H., Liu, Z., Ye, X., Yi, L., Xu, S. and Zhang, T., (2022), "Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system", Energy, Vol. 238, No. 121949.
  12. Chitgar, N. and Moghimi, M.(2020), "Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production", Energy, Vol. 197, No. 117162.
  13. Dimitrovar, Z. and Nader, W. B.(2022), "PEM fuel cell as an auxiliary power unit for range extended hybrid electric vehicles", Energy Vol. 239, No. 121933.
  14. Duong, P. A., Ryu, B., Jung, J. and Kang, H.(2022a), "Thermal Evaluation of a Novel Integrated System Based on Solid Oxide Fuel Cells and Combined Heat and Power Production Using Ammonia as Fuel", Appl. Sci. Vol. 12, No. 6287.
  15. Duong, P. A., Ryu, B., Kim, C., Lee, J. and Kang, H. (2022b), "Energy and Exergy Analysis of an Ammonia Fuel Cell Integrated System for Marine Vessels", Energies, Vol. 15, Issue. 9.
  16. Ezzat, M. F. and Dincer, I.(2020), "Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems", Energy, Vol. 194, No. 116750.
  17. Faungnawakij, K., Kikuchi, R. and Eguchi, K.(2006), "Thermodynamic evaluation of methanol steam reforming for hydrogen production", J. Power Sources, Vol. 161, pp. 87-94. https://doi.org/10.1016/j.jpowsour.2006.04.091
  18. Gholamian, E. and Zare, V.(2016), "A comparative thermodynamic investigation with environmental analysis of SOFC waste heat to power conversion employing Kalina and Organic Rankine Cycles", Energy Convers. Manag., Vol. 117, pp. 150-161. https://doi.org/10.1016/j.enconman.2016.03.011
  19. Han, Jaeyoung, Han, Jaesu and Yu, S.(2020). "Investigation of FCVs durability under driving cycles using a model-based approach", J. Energy Storage, Vol. 27, No. 101169.
  20. Hansson, J., Brynolf, S., Fridell, E. and Lehtveer, M.(2020). The potential role of ammonia as marine fuel-based on energy systems modeling and multi-criteria decision analysis. Sustain. Vol. 12, pp. 10-14. https://doi.org/10.3390/SU12083265
  21. International Maritime Organzation, n.d. Adoption of the Initial IMO Strategy on Reduction of GHG Emissions from Ships Vol. 10.
  22. Ishak, F., Dincer, I. and Zamfirescu, C.(2012), "Thermodynamic analysis of ammonia-fed solid oxide fuel cells", J. Power Sources, Vol. 202, pp. 157-165. https://doi.org/10.1016/j.jpowsour.2011.10.142
  23. Jiao, K. and Li, X.(2011), "Water transport in polymer electrolyte membrane fuel cells", Prog. Energy Combust. Sci., Vol. 37, pp. 221-291. https://doi.org/10.1016/j.pecs.2010.06.002
  24. Kim, T., Ahn, K., Vohs, J. M. and Gorte, R. J.(2007), "Deactivation of ceria-based SOFC anodes in methanol", J. Power Sources, Vol. 164, pp. 42-48. https://doi.org/10.1016/j.jpowsour.2006.09.101
  25. Kulikovsky, A. A.(2008), "Optimal temperature for DMFC stack operation", Electrochim. Acta, Vol. 53, pp. 6391-6396. https://doi.org/10.1016/j.electacta.2008.04.046
  26. Laosiripojana, N. and Assabumrungrat, S.(2007), "Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC", J. Power Sources Vol. 163, pp. 943-951. https://doi.org/10.1016/j.jpowsour.2006.10.006
  27. Li, R., Liu, Y. and Wang, Q.(2022), "Emissions in maritime transport: A decomposition analysis from the perspective of production-based and consumption-based emissions", Mar. Policy, Vol. 143, No. 105125.
  28. Li, Y., Li, D., Ma, Z., Zheng, M., Lu, Z., Song, H. and Guo, X.(2022), "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC", Energy, Vol. 257, No. 124729.
  29. Liu, Y., Han, J. and You, H.(2019), "Performance analysis of a CCHP system based on SOFC/GT/CO2 cycle and ORC with LNG cold energy utilization", Int. J. Hydrogen Energy, Vol. 44, pp. 29700-29710. https://doi.org/10.1016/j.ijhydene.2019.02.201
  30. Marandi, S., Sarabchi, N. and Yari, M.(2021), "Exergy and exergoeconomic comparison between multiple novel combined systems based on proton exchange membrane fuel cells integrated with organic Rankine cycles, and hydrogen boil-off gas subsystem", Energy Convers. Manag., Vol. 244, No. 114532.
  31. Mehrpooya, M., Dehghani, H. and Ali Moosavian, S.M.(2016), "Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system", J. Power Sources Vol. 306, pp. 107-123. https://doi.org/10.1016/j.jpowsour.2015.11.103
  32. Meng, T., Cui, D., Ji, Y., Cheng, M. and Tu, B.(2022), "Optimization and efficiency analysis of methanol SOFC-PEMFC hybrid system", Int. J. Hydrogen Energy, Vol. 47, Issue. 64, pp. 27690-27702. https://doi.org/10.1016/j.ijhydene.2022.06.102
  33. Milewski, J., Szczesniak, A. and Szablowski, L.(2021), "A proton conducting solid oxide fuel cell-implementation of the reduced order model in available software and verification based on experimental data", J. Power Sources Vol. 502.
  34. Oh, K., Jeong, G., Cho, E., Kim, W. and Ju, H.(2014), "A CO poisoning model for high-temperature proton exchange membrane fuel cells comprising phosphoric acid-doped polybenzimidazole membranes", Int. J. Hydrogen Energy, Vol. 39, Issue. 36, pp. 21915-21926. https://doi.org/10.1016/j.ijhydene.2014.06.101
  35. Ozcan, O. and Akin, A. N.(2019), "Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: An optimization study", Int. J. Hydrogen Energy, Vol. 44, Issue. 27, pp. 14117-14126. https://doi.org/10.1016/j.ijhydene.2018.12.211
  36. Purnama, H., Girgsdies, F., Ressler, T., Schattka, J. H., Caruso, R. A., Schomacker, R. and Schlogl, R.(2004), "Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol", Catal. Letters, Vol. 94, pp. 61-68. https://doi.org/10.1023/B:CATL.0000019332.80287.6b
  37. Sankar, K., Thakre, N., Singh, S. M. and Jana, A. K.(2017), "Sliding mode observer based nonlinear control of a PEMFC integrated with a methanol reformer", Energy Vol. 139, pp 1126-1143. https://doi.org/10.1016/j.energy.2017.08.028
  38. Smith, J. D. and Novy, M.(2019), "Design of a Modern Proton-Exchange Membrane Fuel Cell Module for Engineering Education", 2018 IEEE Conf. Technol. Sustain. SusTech 2018.
  39. Song, M., Zhuang, Y., Zhang, L., Li, W., Du, J. and Shen, S.(2021), "Thermodynamic performance assessment of SOFC-RC-KC system for multiple waste heat recovery" Energy Convers. Manag. Vol. 245, No. 114579.
  40. Valera-Medina, A., Amer-Hatem, F., Azad, A.K., Dedoussi, I.C., De Joannon, M., Fernandes, R.X., Glarborg, P., Hashemi, H., He, X., Mashruk, S., McGowan, J., Mounaim-Rouselle, C., Ortiz-Prado, A., Ortiz-Valera, A., Rossetti, I., Shu, B., Yehia, M., Xiao, H. and Costa, M.(2021), "Review on ammonia as a potential fuel: From synthesis to economics", Energy and Fuels, Vol. 35, pp. 6964-7029. https://doi.org/10.1021/acs.energyfuels.0c03685
  41. Wang, C., Li, Y., Xu, C., Badawy, T., Sahu, A. and Jiang, C.(2019), "Methanol as an octane booster for gasoline fuels", Fuel, Vol. 248, pp. 76-84. https://doi.org/10.1016/j.fuel.2019.02.128
  42. Wang, X., Yuen, K. F., Wong, Y. D. and Li, K. X.(2020), "How can the maritime industry meet Sustainable Development Goals? An analysis of sustainability reports from the social entrepreneurship perspective", Transp. Res. Part D Transp. Environ., Vol. 78, No. 102173.
  43. Xing, H., Stuart, C., Spence, S. and Chen, H.(2021), "Alternative fuel options for low carbon maritime transportation: Pathways to 2050", J. Clean. Prod. Vol. 297, No. 126651.
  44. Zhang, C., Liu, Z., Zhang, X., Chan, S. H. and Wang, Y.(2016), "Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell - Modelling and fuzzy control of purging process", Energy, Vol. 95, pp. 425-432. https://doi.org/10.1016/j.energy.2015.12.019
  45. Zhang, Jianlu, Xie, Z., Zhang, Jiujun, Tang, Y., Song, C., Navessin, T., Shi, Z., Song, D., Wang, H., Wilkinson, D. P., Liu, Z. S. and Holdcroft, S.(2006), "High temperature PEM fuel cells", J. Power Sources, Vol. 160, pp. 872-891. https://doi.org/10.1016/j.jpowsour.2006.05.034
  46. Zhang, P., Yang, Y., Yang, Z. and Peng, S.(2022), "Direct power generation from methanol by solid oxide fuel cells with a Cu-ceria based catalyst layer", Renew. Energy, Vol. 194, pp. 439-447. https://doi.org/10.1016/j.renene.2022.05.089
  47. Zhao, J., Cai, S., Luo, X. and Tu, Z.(2022), "Dynamic characteristics and economic analysis of PEMFC-based CCHP systems with different dehumidification solutions", Int. J. Hydrogen Energy, Vol. 47, pp 11644-11657. https://doi.org/10.1016/j.ijhydene.2022.01.182
  48. Zhou, J., Wang, Z., Han, M., Sun, Z. and Sun, K. (2022), "Optimization of a 30 kW SOFC combined heat and power system with different cycles and hydrocarbon fuels", Int. J. Hydrogen Energy, Vol. 47, pp. 4109-4119. https://doi.org/10.1016/j.ijhydene.2021.11.049
  49. Zis, T. P. V., Psaraftis, H. N., Tillig, F. and Ringsberg, J. W.(2020), "Decarbonizing maritime transport: ARo-Pax case study", Res. Transp. Bus. Manag., Vol. 37.