• Title/Summary/Keyword: Marine clay

Search Result 380, Processing Time 0.027 seconds

A Study on Contaminant Sorption Capacity of Soil Liner for Seashore Waste Landfill by Using Column Test Apparatus (주상시험장치를 이용한 해안 폐기물 매립장 지반토지 오염물 흡착능에 관한 연구)

  • Jang, Yeon-Su;Han, Seong-Gil;Kim, Su-Sam
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.75-84
    • /
    • 1997
  • In this paper, the retardation capacity of marine clay and weathered soil of seashore waste landfill is analyzed by using a laboratory column apparatus for organic and inorganic components which can represent the components of the leachate of municipal waste landfill. The results show that sorption capacity marine clay for potassium is larger than that of weathered soil. Lead and cadmium are adsorbed completely at concentrations higher than the real concentrations developed in the landfill. The bottom soils of seashore landfill can also retard some nondegradable components of organics although their sorption capacities for organics were less than those for inorganics.

  • PDF

A Comparison Study on Compression Index of Marine Clay with High-Plasticity (고소성 해성점토지반의 압축지수에 대한 비교 연구)

  • Jung, Gil-Soo;Park, Byung-Soo;Hong, Young-Kil;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.57-65
    • /
    • 2005
  • In this paper, for the highly plastic marine soft clay distributed in west and southern coast of Korean peninsula of Kwangyang and Busan New Port areas, correlation between compression index and other indices representing geotechnical engineering properties such as liquid limit, void ratio and natural water content were analyzed. Appropriate empirical equations of being able to estimate the compressibility of clays in the specific areas were proposed and compared with other existing empirical ones. For analyses of the data and test results, data for marine clays were used from areas of the South Container Port of the Busan New Port, East Breakwater, Passenger Quay, Jungma Reclamation and Reclamation Containment in the 3rd stage in Kwangyang. In order to find the best regression model by using the commercially available software, MS EXCEL 2000, results obtained from the simple linear regression analysis, using the values of liquid limit, initial void ratio and natural water content as independent variables, were compared with the existing empirical equations. Multiple linear regression was also performed to find the best fit regression curves for compression index and other soil properties by combining those independent variables. On the other hands, another software of SPSS for non-linear regression was used to analyze the correlations between compression index and other soil properties.

  • PDF

The Undrained Shear Strength Characteristics of Mixed Soil with Oyster Shells (굴패각 혼합토의 비배수 전단강도 특성)

  • 송영진;김기영;문홍득
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.7-14
    • /
    • 2003
  • In this study, undrained shear test was performed$K_o$ consolidation in order to study the shear strength characteristics of oysters-marine clay mixtures for three mixed ratios(0%, 25% and 50%). And, in order to study shear strength characteristics of oysters-marine clay mixtures, three different effective vertical stresses(200, 300 and 400kPa) were applied for the $K_o$ consolidation tests. In addition three different axial strain rates(0.005%/min, 0.05%/min, 0.5%/min) were applied for the case of effective vertical stress, 300kPa. According to experimental results, the more mixed ratios were increased, the more deviator stress was increased by crushing effect of oysters particles. especially, when effective vertical stress is 300kPa and mixed ratio increase from 25% to 50%, Test shows the increase of shear strength. But axial strain rate was not effect on the undrained shear strength. In the comparison and analysis that are based on the values of tests on the oysters-marine clay mixtures and the Mayne & Bishop's empiric formula, the undrained shear strength ratio shows a similar pattern of the tests. But for the prediction of the coefficient of the pore water pressure, the value of empiric formula shows more overestimated than the values of the tests at 0%, mixture ratio.

Estimation on Discharge Capacity of Prefabricated Vortical Drains Considering Influence Factors (영향인자를 고려한 연직배수재의 통수능 평가)

  • Shin Eun-Chul;Park Jeong-Jun;Kim Jong-In
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.13-23
    • /
    • 2005
  • The prefabricated vertical drains (PVDs) are one of the most widely used techniques to accelerate the consolidation of soft clay deposits and dredged soil. Discharge capacity is one of the factors affecting the behavior of PVDs. In the field, a PVD is confined by clay or dredged soil, which is normally remolded during PVD installation. Under field conditions, soil particles may enter the PVD drainage channels, and the consolidation settlement of the improved subsoil may cause 131ding of the PVD. These factors will affect the discharge capacity of the PVDs. In this study an experimental study was carried out to estimate the discharge capacity of three different types of PVDs by utilizing the large-scale laboratory model testing and small-scale laboratory model testing equipments. The several factors such as confinement condition (confined by soft marine clay or dredged soil) and variations of the discharge capacity were studied with time under soil specimen confinement, The test results indicated that discharge capacity decreases with increasing load, time, and hydraulic gradient. With load application, the cross-sectional area of the drainage channel of PVD decreases because the filter of PVD is pressed into the core. The discharge capacity of the soft marine clay-confined PVDs is much lower than that of the dredged soil-confined PVDs.

Analysis on the Relationship of Geotechnical Strength Parameters in the Marine Clay (해성점토의 지반 강도정수 상관성 분석)

  • Heo, Yol;Kwon, Seonwuk;Lee, Cheokeun;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.33-43
    • /
    • 2010
  • The physical characteristics of the marine clay in the Korean Peninsula, specifically Pusan areas of the south coast of Korea, were previously studied and reliable data from harbor construction projects were used for the relationship analysis of geotechnical strength parameters. The sample of marine clay classified to ML, MH, CL, CH and ML-CL from USCS were included for the analysis while the samples classified to SC were excluded in order to raise the degree of data analysis. Geotechnical strength properties, such as undrained shear strength, sensitivity ratio, and effective friction angle were analyzed and evaluated using the data obtained from unconfined compression test, triaxial compression test and field vane test. Abnormal values were extracted through statistical analysis. Moreover, the reliability of the results was improved by performing the evaluation of disturbance. Linear regression analysis was used for the relationship analysis, between undrained shear strength and depth. The relationship equation between undrained shear strength and depth was derived from the analysis of unconfined and triaxial compression test data of samples obtained at same location. Consequently, The relationship between depth and undrained shear strength is $S_u=0.015148D+0.04624$ and the undrained shear strength derived from the triaxial compression test was estimated to be about 1.26 of derived from the unconfined compression test.

Evaluation of Freezing Rate of Marine Clay by Artificial Ground Freezing Method with Liquid Nitrogen (액화질소를 이용한 인공동결공법 적용시 해성 점토지반의 동결속도 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.555-565
    • /
    • 2018
  • Nowadays, the artificial ground freezing (AGF) method has been used in many geotechnical engineering applications such as temporary excavation support, underpinning, and groundwater cutoff. The AGF method conducts the freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as an excavation support and cutoff wall. Two refrigerants of brine with the freezing temperature of $-20{\sim}-40^{\circ}C$ and liquid nitrogen with the freezing (evaporating) temperature of $-196^{\circ}C$ are commonly being used in geotechnical applications. This paper performed a series of field experiments to evaluate the freezing rate of marine clay in application of the AGF method. The field experiments consisted of the single freezing-pipe test and the frozen-wall formation test by circulating liquid nitrogen, which is a cryogenic refrigerant, into freezing pipes constructed at a depth of 3.2 m in the ground. The temperature of discharged liquid nitrogen was maintained through the automatic valve, and the temperature change induced by AGF method was measured at the freezing pipes and in the ground with time. According to the experimental results, the single freezing-pipe test consumed about 11.9 tons of liquid nitrogen for 3.5 days to form a cylindrical frozen body with the volume of about $2.12m^3$. In addition, the frozen-wall formation test used about 18 tons of liquid nitrogen for 4.1 days to form a frozen wall with the volume of about $7.04m^3$. The radial freezing rate decreased with increasing the radius of frozen body because the frozen area at a certain depth is proportional to the square of the radius. The radial freezing rate was formulated as a simple equation.

Estimation of Application on the Site of SRC Method for the Ground Reinforcement in Marine Clay (해성점토층에서 SRC 지반보강에 관한 현장적용성 평가)

  • Lee, Seungjun;Lee, Seogyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2013
  • Currently, the west coast has focused on large-scale investment and development, such as harbor construction work and land reclamation projects, with soft ground grouting issues being the major concern. In addition, grouting for soft ground reinforcement is definitely considered that construction purpose, soil condition, construction situation, and construction costs. The SRC method, which is a high pressure injection method, can easily produce well-distributed strength regardless of soil characteristics and is environmentally friendly. Therefore in this study, the SRC method was applied to marine clay on the west coast where located Jeongok-ri, Seosin-myeon, Hwaseong-si, Gyeonggi-do, Korea as well as estimated of the ground reinforcement and the application on the site. The results of the application on the site by SRC method indicated age 28 day strength is $14,700{\sim}31,800kN/m^2$ which is satisfied the criterion of unconfined compressive strength that more than $5,333kN/m^2$. Therefore the result that the SRC method constructed marine clay on the west coast indicated the outstanding strength as well as excellent durability.

Strength Characteristics of Solidified Soil with Hardening Agents made of Industrial By-Products (산업부산물을 이용한 지반고화제 혼합토의 강도특성)

  • Kim, Youngsang;Yu, Geunmo;Mun, Kyoungju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • In this study, geotechnical tests including unconfined compression test were carried out to evaluate the ground improvement effect of the hardening agent, which has been developed by using inter-chemical reactions between slag, fly ash, phosphogypsum and bypass dust on the weathered granite soil and dredged marine clay. Test results show that the strength of weathered granite soil mixed with hardening agent B-2, which uses phosphogypsum as an activator, is higher than that of B-1, which uses bypass dust as an activator. Strengths of B-1 & B-2 hardening agent mixed soil show only 44%~60% of strength of OPC(Ordinary Portland Cement, OPC) mixed soil. However, since B-1 and B-2 agents are made of industrial by-products, they seem economically more effective than ordinary portland cement as well as other present hardening agents. Test results on dredged marine clay show that unconfined compression strength increases with amount of agent and curing days. Unconfined compression strength of 14% B-1 agent mixed soil increases linearly with curing days and reaches only 40% of OPC mixed soil. While unconfined compression strength of 14% B-2 agent mixed soil increases exponentially and reaches 133% of OPC mixed soil. Relationship between deformation modulus and unconfined compression strength of B-1 and B-2 mixed soil can be expressed as $E_{50}=(20{\sim}47)_{qu,28}$, which is similar with lower limit of OPC mixed dredged marine clay.

Centrifuge Model Experiments on One-dimensional Consolidation of Soft Clay with Surcharges (상재하중에 의한 연약점토의 일차원 압밀에 관한 원심모형실험)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.103-110
    • /
    • 1997
  • This thesis is to investigate the one-dimensional consolidation behavior of soft marine clay with uniform surcharges by perfoming numerical and experimental works. Parametric experimental works of centrifuge model test were carried out changing test conditions of gravitational level in centrifuge, magnitude of surcharges and construction sequence of applying surcharges. Results of centrifuge model experiments were analyzed by using the numerical technique of explicit finite difference method based on the finite strain consolidation theory, being known to be appropriate to analyze the consolidational behavior of soft clay with a very high initial void ratio using the Lagrangian and the material coordinate systems. Test results were in relatively good agreements with analyzed results in terms of excess pore pressure dissipation and consolidation settlement with time and final void ratio distribution.

  • PDF

A Study on the Surface Soil Stabilization Method on Marine Clay (해성점성토의 표층안정처리 공법에 관한 연구)

  • 천병식;한기열
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.129-134
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization a sat ground This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specificutions. Hardening agent is properly mixed with Fly ash, Gyosum, Slag and Cement for the etmmngite hydrates which is dective for early stabilization of unconsoliokrred soil. \ulcornerhe treated soil is the clay tint is widely found here and there in Koresz In this study, preliminary tests were performed to get optirml mixture ratio of stabilizer ingredient, and mrvine clay in Jin-Hae was used to get physid and Md properties. Labomtory tests of 50 stabilized soil were performed to get optimal mixture mtio for 16-stabilizer merial a 6 types, a d stabilizer mixing was determined

  • PDF