• Title/Summary/Keyword: Marine Spatial Data

Search Result 269, Processing Time 0.024 seconds

Short-Term Variability of a Summer Cold Water Mass in the Southeast Coast of Korea Using Satellite and Shipboard Data (위성 및 현장 자료를 이용한 동해남동부 연안해역의 하계 냉수대의 단기변동)

  • Kim, Sang-Woo;Go, Woo-Jin;Jang, Lee-Hyun;Lim, Jin-Wook;Yamada, Keiko
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.169-171
    • /
    • 2008
  • The objective of this paper is to explore the short-term variability of sea surface temperature (SST) and chlorophyll a (Chl-a) derived from satellite in the upwelling region of the southeast coast of Korea in summer. We particularly emphasize the spatial variability of SST and Chl-a in the East Korean Warm Current (EKWC) during summer monsoon. Spatial distribution of SST and Chl-a in the EKWC are described using SeaWiFS and AVHRR images in August, 2007. Spatial distribution of SST and Chl-a around EKWC can be classified into four categories in the profile of SST and Chl-a images: (1) coastal cold water region, (2) cold water region of thermal front, (3) warm water region, (4) cold water of offshore region.

  • PDF

Characteristics of Korean Trawl Fisheries in the Southwest Atlantic Ocean (남서대서양 한국트롤어업의 조업특성)

  • Ku, Jeong Eun;Kim, Eunjung;Choi, Seok-Gwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.517-525
    • /
    • 2021
  • Trawl fishing is a major concern worldwide, and there is considerable debate about its impact on marine ecosystems. In this study, we used the vessel monitoring system (VMS) data collected in the southwest Atlantic Ocean from 2016 to 2019 to estimate the fishing effort and trawled area. Spatial distribution of trawl activities according to the latitude and longitude and the hotspots where fishing was concentrated each year were identified. Trawling activities of the Korean vessels were mainly distributed between 40-52°S and 56-63°W. The species caught during the fishing period comprised five Cephalopoda, three Chondrichthyes, ten Osteichthyes, and other fish. The Argentine hake Merluccius hubbsi and Argentine shortfin squid Illex argentinus were the dominant species in the catch.

The Surface fCO2 Distribution of the Western North Pacific in Summer 2002 (2002년 여름 북서태평양 표층 해수의 이산화탄소 분포 특성)

  • Choi, Sang-Hwa;Kim, Dong-Seon;Shim, Jeong-Hee;Min, Hong-Sik
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2006
  • We measured the fugacity of $CO_2$ $(fCO_2)$, temperature, salinity, nutrients and chlorophyll a in the surface water of the western North Pacific $(4^{\circ}30'{\sim}33^{\circ}10'N,\;144^{\circ}20'{\sim}127^{\circ}35'E)$ in September 2002. There were zonally several major currents which have characteristics of specific temperature and salinity (NECC, North Equatorial Counter Current; NEC, North Equatorial Current; Kuroshio etc.). Surface $fCO_2$ distribution was clearly distinguished into two groups, tropical and subtropical areas of which boundary was $20^{\circ}N$. In the tropical Int surface $fCO_2$ was mainly controlled by temperature, while in the subtropical area, surface $fCO_2$ was dependent on total inorganic carbon contents. Air-sea $CO_2$ flux showed a large spatial variation, with a range of $-0.69{\sim}0.79 mmole\;m^{-2}day^{-1}$. In the area of AE (Anticyclonic Eddy), SM(Southern Mixed region) and NM (Northern Mixed region), the ocean acted as a weak source of $CO_2$ $(0.6{\sim}0.79 mmole\; m^{-2}day^{-1})$. In NECC, NEC, Kuroshio and ECS (East China Sea), however, the fluxes were estimated to be $-0.3mmole\; m^{-2}day^{-1})$ for the first three regions and $-1.2mmole\; m^{-2}day^{-1})$ for ECS respectively, indicating that these areas acted as sinks of $CO_2$. The average air-sea flux in the entire study area was $0.15mmole\;m^{-2}day^{-1})$, implying that the western North Pacific was a weak source of $CO_2$ during the study period.

Accuracy of Short-Term Ocean Prediction and the Effect of Atmosphere-Ocean Coupling on KMA Global Seasonal Forecast System (GloSea5) During the Development of Ocean Stratification (기상청 계절예측시스템(GloSea5)의 해양성층 강화시기 단기 해양예측 정확도 및 대기-해양 접합효과)

  • Jeong, Yeong Yun;Moon, Il-Ju;Chang, Pil-Hun
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.599-615
    • /
    • 2016
  • This study investigates the accuracy of short-term ocean predictions during the development of ocean stratification for the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 5 (GloSea5) as well as the effect of atmosphere-ocean coupling on the predictions through a series of sensitive numerical experiments. Model performance is evaluated using the marine meteorological buoys at seas around the Korean peninsular (KP), Tropical Atmosphere Ocean project (TAO) buoys over the tropical Pacific ocean, and ARGO floats data over the western North Pacific for boreal winter (February) and spring (May). Sensitive experiments are conducted using an ocean-atmosphere coupled model (i.e., GloSea5) and an uncoupled ocean model (Nucleus for European Modelling of the Ocean, NEMO) and their results are compared. The verification results revealed an overall good performance for the SST predictions over the tropical Pacific ocean and near the Korean marginal seas, in which the Root Mean Square Errors (RMSE) were $0.31{\sim}0.45^{\circ}C$ and $0.74{\sim}1.11^{\circ}C$ respectively, except oceanic front regions with large spatial and temporal SST variations (the maximum error reached up to $3^{\circ}C$). The sensitive numerical experiments showed that GloSea5 outperformed NEMO over the tropical Pacific in terms of bias and RMSE analysis, while NEMO outperformed GloSea5 near the KP regions. These results suggest that the atmosphere-ocean coupling substantially influences the short-term ocean forecast over the tropical Pacific, while other factors such as atmospheric forcing and the accuracy of simulated local current are more important than the coupling effect for the KP regions being far from tropics during the development of ocean stratification.

An Analysis of Subtidal Macroalgal Community Structure Using a Modified Photo Quadrat Method (수정된 사진방형구법을 이용한 조하대 해조류의 군집구조 분석)

  • Kim, Young-Dae;Park, Mi-Seun;Moon, Tae-Seok;Ahn, Jung-Kwan;Kim, Su-Ji;Kim, Young-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.3
    • /
    • pp.298-307
    • /
    • 2011
  • The species composition and distributions of subtidal marine algae on the east coast of Korea were studied. We examined all species found in permanent quadrats at three depths (3 m, 5 m and 10 m) at Sacheon between October 2008 and December 2009. Coverage and frequency data were collected monthly via underwater photography and analyzed using a modified photo quadrat method. Of the 82 species identified, 10 were chlorophytes, 21 were phaeophytes, 50 were rhodophytes, and one was a seagrass. The largest number of species (59) was found 10 m deep, while the fewest (39) species were present at 5 m. A total 17 species (two green, five brown, and 10 red algae) occurred at all three depths. The vertical distribution of the study site was characterized by the melobesioidean algae, Ulva pertusa, Sargassum confusum, Phyllospadix iwatensis, and Codium arabicum at 3 m deep, melobesioidean algae and U. pertusa at 5 m deep, and Corallina pilulifera, Prionitis cornea, Chondracanthus tenellus and melobesioidean algae at 10 m deep. Given that coralline algae such as melobesioidean algae and C. pilulifera play important roles in coastal ecosystems, thorough studies on the spatial and temporal variations of coralline algae and the dynamics of marine algal communities on the east coast of Korea are now required.

Application of ROMS-NPZD Coupled Model for Seasonal Variability of Nutrient and Chlorophyll at Surface Layer in the Northwestern Pacific (ROMS-NPZD 접합모델을 이용한 한반도 주변해역의 표층 영양염 및 클로로필의 계절변동성)

  • Lee, Joon-ho;Kim, Tae-hoon;Moon, Jae-hong
    • Ocean and Polar Research
    • /
    • v.38 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • Recently, there has been a growing interest in physical-biological ocean-modeling systems by communities in the fields of science and business. In this paper, we present preliminary results from a coupled physical-biological model for the Northwestern Pacific marginal seas. The ocean circulation component is an implementation of the Regional Ocean Modeling System (ROMS), and the lower trophic level ecosystem component is a Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) model. The ROMS-NPZD coupled system, with a 25 km resolution, is forced by climatological atmospheric data and predicts the physical variables and concentrations of nitrate, phytoplankton, zooplankton, and detritus. Model results are compared with remote-sensed sea surface temperature and chlorophyll, and with climatological sea surface salinity and nitrate. Our model adequately reproduces the observed spatial distribution and seasonal variability of nitrate and chlorophyll concentrations as well as physical variables, showing a high correlation in the East Sea (ES) and Kuroshio/Oyashio Extension (KOE) region but relatively low correlation in the Yellow Sea (YS) and East China Sea (ECS). Although some deficiencies were found in the biological components, such as the over/underestimation of the intensity of phytoplankton blooms in the ES and KOE/the YS and ECS, our system demonstrates the capability of the model to capture and record dominant seasonal variability in physical-biological processes and this holds out the promise of coming to a better understanding of such processes and making better predictions .

A Study on the Distribution of Summer Water Temperatures of the Central Coast of the Southern Sea of Korea Using Numerical Experimentation (수치실험을 이용한 남해 중부 연안의 하계 수온 분포 연구)

  • Choi, Min-Ho;Seo, Ho-San;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • To understand the spatial-temporal distribution of seawater in Korea's South Sea, seawater movement and the distribution of water temperature has been analyzed using a hydrodynamic model (the Princeton Ocean Model). The directions of tidal currents were generally westward during flood tides and eastward during ebb tides. Northeastward Tsushima Warm Currents in the open sea, which is deeper than 50m were stronger than in coastal areas. Analysis of data from the hydrodynamic model showed that the water temperature in the semi-closed bay was relatively higher ($26{\sim}28^{\circ}C$) than in the open sea ($18{\sim}22^{\circ}C$). The exchange volume of semi-closed seawater was $10,331m^3/sec$ in Gwangyang Bay, $16,935m^3/sec$ in Yeosu-Gamag Bay and $13,454m^3/sec$ in Geoje-Hansan Bay. Therefore, it was shown that the lower seawater exchange volume is, the higher seawater temperature will be.

Benchmark Test Study of Localized Digital Streamer System (국산화 디지털 스트리머 시스템의 벤치마크 테스트 연구)

  • Jungkyun Shin;Jiho Ha;Gabseok Seo;Young-Jun Kim;Nyeonkeon Kang;Jounggyu Choi;Dongwoo Cho;Hanhui Lee;Seong-Pil Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.52-61
    • /
    • 2023
  • The use of ultra-high-resolution (UHR) seismic surveys to preceisly characterize coastal and shallow structures have increased recently. UHR surveys derive a spatial resolution of 3.125 m using a high-frequency source (80 Hz to 1 kHz). A digital streamer system is an essential module for acquiring high-quality UHR seismic data. Localization studies have focused on reducing purchase costs and decreasing maintenance periods. Basic performance verification and application tests of the developed streamer have been successfully carried out; however, a comparative analysis with the existing benchmark model was not conducted. In this study, we characterized data obtained by using a developed streamer and a benchmark model simultaneously. Tamhae 2 and auxiliary equipment of the Korea Institute of Geoscience and Mineral Resources were used to acquire 2D seismic data, which were analyzed from different perspectives. The data obtained using the developed streamer differed in sensitivity from that obtained using benchmark model by frequency band.However, both type of data had a very high level of similarity in the range corresponding to the central frequency band of the seismic source. However, in the low frequency band below 60 Hz, data obtained using the developed streamer showed a lower signal-to-noise ratio than that obtained using the benchmark model.This lower ratio can hinder the quality in data acquisition using low-frequency sound sources such as cluster air guns. Three causes for this difference were, and streamers developed in future will attempt to reflect on these improvements.

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.

Distribution and Abundance of Japanese Anchovy Engraulis japonicus and Other Fishes in Asan Bay, Korea, estimated Hydroacoustic Survey (수산음향기법을 이용한 아산만 멸치(Engraulis japonicus)와 기타어군의 분포 및 현존량 추정)

  • Lee, Hyung-Been;Kang, Don-Hyug;Im, Yang-Jae;Lee, Kyoung-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.671-681
    • /
    • 2014
  • The distribution and abundance of coastal fish species in Asan Bay, Korea, were estimated from hydroacoustic survey and net catches. Acoustic data were collected with 38 and 200 kHz from July to October of 2012, and converted to the nautical area scattering coefficient (NASC, $m^2/mile^2$) for $0.25n{\cdot}mile$ along ten transects. Japanese anchovy Engraulis japonicus was the dominant specie in the net catches. The virtual echogram technique was used to distinguish E. japonicus from other species based on the differences in the mean volume backscattering strength (${\Delta}MVBS$) at 38 and 200 kHz. Engraulis japonicus and other fishes are mainly distributed in the center channel and outer part of Asan Bay. E. japonicus tends to move from inner to outer Asan Bay in summer and fall. From NASC data, the target strength and length-weight function of E. japonicus and other fishes were used to estimate the E. japonicus stock at 24.1-93.3 tons, and other fish at 40.6-88.4 tons from July to October 2012. The estimated anchovy biomass compared well with the cumulative catch weight from stow net catches. The hydroacoustic method offers an approach to understanding spatial/temporal structure and estimating the biomass of fish aggregations in coastal areas.