Browse > Article
http://dx.doi.org/10.5657/KFAS.2021.0517

Characteristics of Korean Trawl Fisheries in the Southwest Atlantic Ocean  

Ku, Jeong Eun (Distant Water Fisheries Resources Division, National Institute of Fisheries Science)
Kim, Eunjung (Distant Water Fisheries Resources Division, National Institute of Fisheries Science)
Choi, Seok-Gwan (Cetacean Research Institute, National Institute of Fisheries Science)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.54, no.4, 2021 , pp. 517-525 More about this Journal
Abstract
Trawl fishing is a major concern worldwide, and there is considerable debate about its impact on marine ecosystems. In this study, we used the vessel monitoring system (VMS) data collected in the southwest Atlantic Ocean from 2016 to 2019 to estimate the fishing effort and trawled area. Spatial distribution of trawl activities according to the latitude and longitude and the hotspots where fishing was concentrated each year were identified. Trawling activities of the Korean vessels were mainly distributed between 40-52°S and 56-63°W. The species caught during the fishing period comprised five Cephalopoda, three Chondrichthyes, ten Osteichthyes, and other fish. The Argentine hake Merluccius hubbsi and Argentine shortfin squid Illex argentinus were the dominant species in the catch.
Keywords
Trawl fishery; Southwest atlantic Ocean; Vessel monitoring system; Characteristics; Species composition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 NFRDI (National Fisheries Research and Development Institute). 2008. Field guide to Bycatch species in Korean distant water fisheries. NFRDI, Busan, Korea.
2 Norse EA, Brooke S, Cheung WWL, Clark M, Ekeland I and Watson R. 2012. Sustainability of deep-sea fisheries. Mar Policy 36, 307-320. https://doi.org/10.1016/j.marpol.2011.06.008.   DOI
3 Paloheimo JE and Dickie LM. 1964. Abundance and fishing success. J Cons Int Explor Mer 155, 152-163.
4 Marrari M, Piola AR, Valla D and Wilding JG. 2016. Trends and variability in extended ocean color time series in the main reproductive area of the Argentine hake, merluccius hubbsi (Southwestern Atlantic Ocean). Remote Sens Environ 177, 1-12. https://doi.org/10.1016/j.rse.2016.02.011.   DOI
5 Alemany D, Acha EM and Iribarne OO. 2016. Distribution and intensity of bottom trawl fisheries in the patagonian shelf large marine ecosystem and its relationship with marine fromts. Fish Oceanogr 25, 183-192. https://doi.org/10.1111/fog.12144.   DOI
6 Anticamara JA, Watson R, Gelchu A and Pauly D. 2011. Global fishing effort (1950-2010): trends, gaps, and implications. Fish Res 107, 131-136. https://doi.org/10.1016/j.fishres.2010.10.016.   DOI
7 Stelzenmuller V, Rogers SI and Mills CM. 2008. Spatiotemporal patterns of fishing pressure on UK marine landscapes and their implications for spatial planning and management. ICES J Mar Sci 65, 1081-1091. https://doi.org/10.1093/icesjms/fsn073.   DOI
8 Navarro G, Rozycki V and Monsalvo M. 2014. Estadisticas de la opesca marina en la Argentina: evolucion de los desembarques 2008-2013. Ministerio de Agricultura, Ganaderia y Pesca de la Nacion, Buenos Aires, Argentino.
9 Bezzi S, Akselman R and Boschi EB. 2000. Sintesis del estado de las pesquerias maritimas argentinas y de la Cuenca del Plata. Anos 1997-1998, con actualizacion de 1999. INIDEP, Mar del Plata, Argentina.
10 IPBES (Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services). 2019. IPBES7 Media release global assessment report. Retrieved from https://www.ipbes.net on Jun 10, 2021.
11 Ye Y, Cochrane K, Bianchi G, Willmann R, Majkowski J, Tandstad M and Carocci F. 2013. Rebuilding global fisheries: the World summit goal, costs and benefits. Fish Fish 14, 174-185. https://doi.org/10.1111/j.1467-2979.2012.00460.x.   DOI
12 Parker G, Paterlini MC and Violante RA. 1997. El Mar Argentino y sus recursos pesqueros Tomo 1: Antecedentes historicos de las exploraciones en el mar y las caracteristicas ambientales. In: El fondo marino. Boschi EE, ed. INDEP, Mar del Plate, Argentino, 65-87.
13 Alemany D, Acha EM and Iribarne OO. 2014. Marine fronts are important fishing areas for demersal species at the Argentine Sea (Southwest Atlantic Ocean). J Sea Res 87, 56-67. https://doi.org/10.1016/j.seares.2013.12.006.   DOI
14 Bezzi SI, Renzi M, Irusta G, Santos B, Tringali LS, Ehrlich MD, Sanchez F, Garcia de la Rosa S, Simonazzi M and Castucci R. 2004. El Mar Argentino y sus recursos pesqueros. In: Caracterizacion biologica y Pesquera de la merluza Merlucius hubbsi. Instituto Nacional de Investigacion y Desarrollo Pesquero, Mar del Plata, Argentina, 157-205.
15 NFRDI (National Fisheries Research and Development Institute). 2018. Species identification guide of the Southwest Atlantic Ocean. Mapledesign Publ Co., Busan, Korea.
16 Bovcon ND, Gongora ME, Marinao C and Gonzalez-Zevallos D. 2013. Composicion de las capturas y descartes generados en la pesca de merluza comun Merluccius hubbsi y langostino patagonico pleoticus muelleri: un caso de studio en la flota fresquera de altura del Golfo San Jorge, Chubut, Argentina. Rev Bio Mar Oceanogr 48, 303-319. http://dx.doi.org/10.4067/S0718-19572013000200010.   DOI
17 Brewer D, Eayrs S, Mounsey R and Wang YG. 1996. Assessment of an environmentally friendly, semi-pelagic fish trawl. Fish Res 26, 225-237.   DOI
18 Doti, BL, Roccatagliata D and Gappa JL. 2014. An inverse latitudinal biodiversity pattern in assellote isopods Crustacea Peracarida from the Southwest Atlantic between 35 and 56 S. Mar Biodivers 44, 115-125. https://doi.org/10.1007/s12526-013-0187-y.   DOI
19 Irusta G, Bezzi SI, Simonazzi M and Castrucci R. 2001. Infrome tecnico 42. In: Los desembarques argentines de merluza Merluccius hubbsi entre 1987 y 1997. Instituto Nacional de Investigacion y Desarrollo Pesquero, Mar del Plate, Argentino, 1-24.
20 Jennings S and Lee J. 2012. Defining fishing grounds with vessel monitoring system data. ICES J Mar Sci 69, 51-63. https://doi.org/10.1093/icesjms/fsr173.   DOI
21 Mills CM, Townsend SE, Jennings S, Eastwood PD and Houghton CA. 2007. Estimating high resolution trawl fishing effort from satellite-based vessel monitoring system data. ICES J Mar Sci 64, 248-255. https://doi.org/10.1093/icesjms/fsl026.   DOI
22 FAO (Food and Agriculture Organization of the United Nations). 2009. The state of world fisheries and aquaculture-2008 (SOFIA). FAO, Rome, Italy, 176.
23 FAO (Food and Agriculture Organization of the United Nations). 2014. The state of world fisheries and aquaculture 2014-opportunities and challenges. FAO Fisheries Report, Rome, Italy, 243.
24 Garcia SM, Rice J and Charles A. 2014. Governance of marine fisheries and biodiversity conservation: Convergence or coevolution. Wiley-Blackwell, Hoboken, NJ, U.S.A., 18-36.
25 Kaiser MJ, Collie JS, Hall SJ, Jennings S and Poiner IR. 2002. Modification of marine habitats by trawling activities: prognosis and solutions. Fish Fish 3, 114-136. https://doi.org/10.1046/j.1467-2979.2002.00079.x.   DOI
26 Pauly D, Christensen V, Guenette S, Pitcher TJ, Sumaila UR, Walters CJ and Zeller D. 2002. Towards sustainability in world fisheries. Nature 418, 689-695. https://doi.org/10.1038/nature01017.   DOI
27 Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS and Sala E. 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787-790. https://doi.org/10.1126/science.1132294.   DOI
28 Sokal PR and Rohlf FJ. 1981. Biometry: The principles and practice of statistics in biological research 2nd. W. H. Freeman and Company, New York, NY, U.S.A.
29 Grafton RQ, Hilborn R, Squires DALE and Williams M. 2010. Marine conservation and fisheries management: at the corssroads. Handbook of Marine Fisheries Conservation and Management, Oxford University Press, London, U.K., 3-19.
30 Ellis N and Wang YG. 2007. Effects of fish density distribution and effort distribution on catchability. ICES J Mar Sci 64, 178-191. https://doi.org/10.1093/icesjms/fsl015.   DOI