• Title/Summary/Keyword: Marine Microorganism

Search Result 102, Processing Time 0.023 seconds

Isolation and Identification of DHA-Rich Marine Microorganism (Docosahexaenoic acid (DHA)를 다량 함유하는 해양미생물의 분리 및 동정)

  • Jeong, U-Cheol;Choi, Byeong-Dae;Choi, Jong-Duck;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.1
    • /
    • pp.31-38
    • /
    • 2014
  • Docosahexaenoic acid (DHA, 22:6n-3) and ecosapentaenoic acid (20:5n-3) have attracted increasing attention since the first epidemiological report on the importance of n-3 essential fatty acids. It is thought that DHA has important functions in brain and retinal tissues. Thraustochytrids, a group of marine protists, are capable of heterotrophic growth, and are potential omega-3 producers for industrial use, especially the members of the Schizochytrium and Thraustochytrium genera. The aims of this work were to isolate, identify and screen thraustochytrids from 17 different locations. Twenty-three isolates were screened for biomass, total fatty acid (TFA) and DHA content. Analysis of the fatty acid methyl esters revealed four distinct clusters biomass ranged from $8.68-9.36gL^{-1}$, and lipid and DHA contents ranged from $3.11-4.10gL^{-1}$ and $1.05-1.93gL^{-1}$ biomass, respectively. B-12 isolates were screened for biomass ($9.36gL^{-1}$), TFA ($4.10gL^{-1}$) and DHA (47.01%, w/w) content. C-6 isolates were also screened for biomass ($8.92gL^{-1}$), TFA ($3.30gL^{-1}$) and DHA (49.41%, w/w) content. The 18S rRNA gene sequencing results identified Schizochytrium mangrovei as B-12 and Crypthecodium cohnii as C-6.

Optimal Conditions for the Production of Exopolysaccharide by Marine Microoranism Hahella chejebsis

  • Ko, Sung-Hwan;Lee, Hyun-Sang;Park, Shin hye;Lee, Hong-Kum
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.181-185
    • /
    • 2000
  • A marine microorganism, strain 96CJ10356 produced exopolysaccharide, designated as EPS-R. To optimize culmize culture conditions for the production of EPS-R, carbon and nitrogen sources, mineral salts, temperature, and pH were exmined. From this study, STN medium for the production of EPS-R was suggested as follows; sucrose 20g, typtone 10g, NaCl 10g, MgSO45g, CaCl21g, KH2PO4 76mg, K2HPO4 83mg, FeCl2 5mg, MnCl2 1mg, NaMoO4 1mg, and ZnCl2 1mg per liter at pH 7.0. About 9.23g/L of EPS-R was obtained from STN medium after cultivation for 120h at $25^{\circ}C$ in a 5-liter jar fermentor with an aearation rate of 0.17 vvm. Apparent viscosity and flocculation activity of the culture broth were increased with the production of EPS-R and the maximal values were 415 cP and 1400 unit/mL against 0.5% activated carbon, respectively.

  • PDF

Effect of Culture Conditions on Characteristics of Growth and Production of Docosahexaenoic acid (DHA) by Schizochytrium mangrovei (배양조건에 따른 Schizochytrium mangrovei의 성장 및 Docosahexaenoic acid의 생산특성)

  • Jeong, U-Cheol;Choi, Byeong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.2
    • /
    • pp.144-153
    • /
    • 2014
  • Both docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) have attracted increasing attention since the first epidemiological report on the importance of n-3 essential fatty acids. Lipids in microbial cells play various biological roles and, consequently, much research has been carried out on their role in cell physiology. The lipid composition of microorganisms can exhibit considerable variations depending on environment. The effects of culture conditions, temperature (15, 20, 24, 28, 32 and $36^{\circ}C$), salinity (10, 20, 30, 40 and 50 psu), pH (pH5, 6, 7, 8 and 9), rotation speeds (50, 100, 150 and 200 rpm), carbon sources, nitrogen sources and C/N ratio on the production of docosahexaenoic acid, fatty-acid profiles, and acids secreted to the broth culture by the oleaginous microorganism, Schizochytrium mangrovei (KCTC 11117BP), were studied. Temperature (initially $28^{\circ}C$), salinity (20 psu), pH (pH7), rotation speeds (100 rpm), organism fatty acids, and secreted acids in the broth were varied during cultivation of S. mangrovei. At pH 7.0, S. mangrovei was able to accumulate lipids up to 40% of its biomass, with 13% (w/w) DHA content. The monosaccharides glucose and fructose, and yeast extract were suitable carbon and nitrogen sources, respectively. The primary omega-3 polyunsaturated fatty acid produced was docosahexaenoic acid.

Evaluation of the Biological Activities of Marine Bacteria Collected from Jeju Island, Korea, and Isolation of Active Compounds from their Secondary Metabolites

  • Kim, Hyun-Soo;Zhang, Chao;Lee, Ji-Hyeok;Ko, Ju-Young;Kim, Eun-A;Kang, Nalae;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.215-222
    • /
    • 2014
  • To explore marine microorganisms with medical potential, we isolated and identified marine bacteria from floats, marine algae, animals, and sponges collected from Jeju Island, Korea. We isolated and identified 21 different strains from the marine samples by 16S rRNA analysis, cultured them in marine broth, and extracted them with ethyl acetate (EtOAc) to collect secondary metabolite fractions. Next, we evaluated their anti-oxidative and anti-inflammatory effects. Among the 21 strains, the secondary metabolite fraction of Bacillus badius had both strong antioxidant and anti-inflammatory activity, and thus was selected for further experiments. An antioxidant compound detected from the secondary metabolite fraction of B. badius was purified by preparative centrifugal partition chromatography (n-hexane:EtOAc:methanol:water, 4:6:4:6, v/v), and identified as diolmycin A2. Additionally, diolmycin A2 strongly inhibited nitric oxide production. Thus, we successfully identified a significant bioactive compound from B. badius among the bacterial strains collected from Jeju Island.

Statistical Optimization for Production of Carboxymethylcellulase from Rice Hulls by a Newly Isolated Marine Microorganism Bacillus licheniformis LBH-52 Using Response Surface Method (통계학적인 방법과 왕겨를 기질로 사용하여 해양에서 분리한 Bacillus licheniformis LBH-52 를 사용한 carboxymethylcellualse의 생산조건 최적화)

  • Kim, Hye-Jin;Gao, Wa;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1083-1093
    • /
    • 2011
  • A microorganism utilizing rice hulls as a substrate for the production of carboxymethylcellulase (CMCase) was isolated from seawater and identified as Bacillus lincheniformis by analyses of its 16S rDNA sequences. The optimal carbon and nitrogen sources for production of CMCase were found to be rice hulls and ammonium nitrate. The optimal conditions for cell growth and the production of CMCase by B. lincheniformis LBH-52 were investigated using the response surface method (RSM). The analysis of variance (ANOVA) of results from central composite design (CCD) indicated that a highly significant factor ("probe>F" less than 0.0001) for cell growth was rice hulls, whereas those for production of CMCase were rice hulls and initial pH of the medium. The optimal conditions of rice hulls, ammonium nitrate, initial pH, and temperature for cell growth extracted by Design Expert Software were 48.7 g/l, 1.8 g/l, 6.6, and 35.7$^{\circ}C$, respectively, whereas those for the production of CMCase were 43.2 g/l, 1.1 g/l, 6.8, and 35.7$^{\circ}C$. The maximal production of CMCase by B. lincheniformis LBH-52 from rice hulls under optimized conditions was 79.6 U/ml in a 7 l bioreactor. In this study, rice hulls and ammonium nitrate were developed to be substrates for the production of CMCase by a newly isolated marine microorganism, and the time for production of CMCase was reduced to 3 days using a bacterial strain with submerged fermentation.

Enhanced Carboxymethylcellulase Production by a Newly Isolated Marine Bacterium, Cellulophaga lytica LBH-14, Using Rice Bran

  • Gao, Wa;Lee, Eun-Jung;Lee, Sang-Un;Li, Jianhong;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1412-1422
    • /
    • 2012
  • The aim of this work was to establish the optimal conditions for production of carboxymethylcellulase (CMCase) by a newly isolated marine bacterium using response surface methodology (RSM). A microorganism producing CMCase, isolated from seawater, was identified as Cellulophaga lytica based 16S rDNA sequencing and the neighborjoining method. The optimal conditions of rice bran, ammonium chloride, and initial pH of the medium for cell growth were 100.0 g/l, 5.00 g/l, and 7.0, respectively, whereas those for production of CMCase were 79.9 g/l, 8.52 g/l, and 6.1. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$, and $(NH_4)_2SO_4$ for cell growth were 6.25, 0.62, 0.28, and 0.42 g/l, respectively, whereas those for production of CMCase were 3.72, 0.54, 0.70, and 0.34 g/l. The optimal temperature for cell growth and the CMCase production by C. lytica LBH-14 were $35^{\circ}C$ and $25^{\circ}C$, respectively. The maximal production of CMCase under optimized condition for 3 days was 110.8 U/ml, which was 5.3 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen sources for the production of CMCase by C. lytica LBH-14. The time for production of CMCase by a newly isolated marine bacterium with submerged fermentations reduced to 3 days, which resulted in enhanced productivity of CMCase and a decrease in its production cost.

Optimal Condition for the Production of Exopolysaccharide by Marine Microorganism 96CJ10356

  • Lee, Hyeon-Sang;Park, Sin-Hye;Go, Seong-Hwan;Lee, Jong-Ho;Lee, Hong-Geum
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.137-140
    • /
    • 2000
  • Marine microorganism strain 96CJ10356 produced exopolysaccharides, designated as EPS-R. To optimize culture conditions for the production of EPS-R, carbon, nitrogen, mineral salt, temperature, and pH were examined. STN medium was suggested as follow; sucrose 20, tryptone 10, NaCl 10, $MgSO_4$ 5, $CaCl_2$ 1, $KH_2PO_4$ 0.0076, $K_2HPO_4$ 0.0083, $FeCl_2$ 0.005, $MnCl_2$ 0.001, $NaMoO_4$ 0.001, $ZnCl_2$ 0.001 (g/1) and pH 7.0 About 9.23 g/l of EPS-R was obtained from the STN medium after cultivation for 120 h at $25^{\circ}C$ in 5-liter jar fermentor with an aeration rate of 0.17 vvm. Apparent viscosity and flocculation activity of the culture broth were increased with the production of the EPS-R and the maximal values were reached to 415 cp and 1400 units/ml against 0.5 % activated carbon, respectively.

  • PDF

Isolation of psychrotrophic microorganism producing soymilk-clotting enzyme from marine fish (생선으로부터 분리한 두유 응고 효소 생산 호냉성 미생물)

  • Kim, Jung-Ho
    • Applied Biological Chemistry
    • /
    • v.36 no.1
    • /
    • pp.45-50
    • /
    • 1993
  • A psychrotrophic microorganism isolated from Alaska pollack (Theragra chalcoramma) produced soymilk-clotting enzyme(s) with relatively low proteolytic activity. The isolate No. 268 was tentatively identified as Pseudomonas sp. Soymilk-clotting activity of the crude enzyme solution was observed at temperatures ranging from 20 to $60^{\circ}C$ and the optimum temperature was $40^{\circ}C$. When the crude enzyme solution was preincubated for 30 minutes, the clotting activity was stable at temperatures up to $30^{\circ}C$ and 75% of the activity was retained at $40^{\circ}C$. The clotting activity was decreased as the pH of soymilk was increased from 5.8 to 7.3.

  • PDF

Tolerance of Anaerobic Granular Sludge to Oxygen

  • Shiru Jia;Benyi Xiao;Choi, Du-Bok;Cho, Ki-An;Kim, Young-Sik
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.405-409
    • /
    • 2003
  • To study the tolerant capacity of anaerobic granular sludge (AGS) to oxygen using semi -dynamic batch experiment, the aerating time, pH of the basal media, reductive inorganic materials, microorganism, and microorganism metabolite were investigated. When the aerating time was higher or lower than 0.5 h, the producing gas activity of sludge was lower than that of the control. The oxygen tolerance of the experimental sludge was the highest at the initial pH 7.2. The producing gas activity of sludge I was higher than that of sludge II. And storage at $4^{\circ}C$ can low the lose of the oxygen tolerance capacity of granular sludge. The producing gas activity of sludge was the highest when KI was added. The growth of aerobic microorganisms and some metabolite could increase the producing gas activity of granular sludge.