• Title/Summary/Keyword: Marine Emissions Regulations

Search Result 57, Processing Time 0.03 seconds

National Management Measures for Reducing Air Pollutant Emissions from Vessels Focusing on KCG Services (선박 대기오염물질 배출 현황 및 저감을 위한 국가 관리 대책 연구: 해양경찰 업무를 중심으로)

  • Lee, Seung-Hwan;Kang, Byoung-Yong;Jeong, Bong-Hun;Gu, Ja-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.163-174
    • /
    • 2020
  • Particulate matter levels are rapidly increasing daily, and this can affect human health. Therefore, air pollutant emissions from sea vessels require management. This study evaluates the status of air pollutants, focusing on air pollutant emissions from the vessels of the Korea Coast Guard (KCG), and proposes national management measures to reduce emissions. According to a report recently released (2018) by the National Institute of Environmental Research (NIER), emissions from vessels constituted 6.4 % of the total domestic emissions, including 13.1 % NOx, 10.9 % SOx, and 9.6 % particulate matter (PM10/PM2.5). Among the rates of pollutant emission from vessels, the emission rates of domestic and overseas cargo vessels were the highest (50.6 %); the ratio of fishing boats was 42.6 %. With respect to jurisdictional sea area, 44.1 % of the emissions are from the south sea, including the Busan and Ulsan ports, and 24.8 % of the emissions are from the west sea, including the Gwangyang and Yeosu ports. The KCG inspects boarding lines to manage emission conditions and regulate air pollutant emissions, but it takes time and effort to operate various discharge devices and measure fuel oil standards. In addition, owing to busy ship schedules, inspection documents are limited in terms of management. Therefore, to reduce the air pollutant emissions of such vessels, regulations will be strengthened to check for air pollutants, and a monitoring system based on actual field data using KCG patrol ships will be established, for each sea area, to manage the emissions of such vessels. Furthermore, there is a need for technological development and institutional support for the introduction of environmentally friendly vessels.

Technical Analysis of an MRV System in Relation to the Implementation of a Data Collection System by the International Maritime Organization (국제해사기구 데이터수집시스템 도입에 따른 MRV 지원시스템의 기술적 분석)

  • Kang, Nam-seon;Lee, Jung-yup;Hong, Yeon-jeong;Byeon, Sang-su;Kim, Jin-yhyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.122-129
    • /
    • 2017
  • This study presents the results from a technical analysis of a portal system that is compatible with MRV regulations and utilized to examine energy efficiency in international shipping, in relation to the implementation of a mandatory data collection system by the International Maritime Organization. The details of the SEEMP guidelines, including the data collection system and methods for collecting data on fuel use, were reviewed. Strategies for domestic shipping companies toward MRV have been recommended by identifying differences with the EU MRV, and the technical adequacy of the MRV system was assessed. The MRV system enhances cost and work efficiency by managing emissions data from the early stage to the final stage. It is capable of collecting and reporting emissions data while adhering to the reporting procedures of shipping companies. By granting different access privileges to users, the system supports shipping companies in their data collection and reporting, and also supports verifiers in their data verification activities. Moreover, it makes possible the submission of reports in electronic from, thereby enabling shipping companies to adopt an integrated response to international MRV regulations.

A Study on Flow Characteristics due to Dimension Variations of the Vertical Plate for Controlling the Ship Stern Flow (선미유동 제어용 수직판 제원 변화에 따른 유동특성 연구)

  • Kim, Do-Jung;Oh, Woo-Jun;Park, Je-Woong;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.576-582
    • /
    • 2016
  • To cope with international regulations, such as Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP) and so forth, and to enforce limitations on $CO_2$ emissions, green-ship technology to lower fuel consumption has been actively researched, and the development of an energy-saving device (ESD) is being pursued. In order to design an ESD for small and medium-sized domestic vessels, an analysis on flow characteristics has been performed in the present study. Through a model test and numerical analyses, the characteristics of flow around the stern bilge and bulb have been compared to improve wake quality and resistance performance. As a result of these comparisons and analyses, a vertical plate has been adopted,, as a new ESD. Design criteria for the proposed ESD are also suggested. By applying this new ESD, it is expected that the total resistance and average nominal wake can be reduced by 3.04 % and 18.8 %, respectively.

FMEA of Electrostatic Precipitator for Preventive Maintenance (전기집진기 예지보전 단계에서의 고장모드영향분석)

  • Han, Seung-Hun;Lee, Jeong-Uk;Lee, Sun-Youp;Hwang, Jong-Deok;Kang, Dae-Kon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.706-714
    • /
    • 2020
  • Currently, 90 % of the world's population breathes air with a fine dust content exceeding the World Health Organization's annual average exposure limit (10 ㎍/㎥). Global efforts have been devoted toward reducing secondary pollutants and ultra-fine dust through regulations on nitrogen oxides released over land and sea. Domestic efforts have also aimed at creating clean marine environments by reducing sulfur emissions, which are the primary cause of dust accumulation in ships, through developing and distributing environment-friendly ships. Among the technologies for reducing harmful emissions from diesel engines, electrostatic precipitator offer several advantages such as a low pressure loss, high dust collection efficiency, and NOx removal and maintenance. This study aims to increase the durability of a ship by improving equipment quality through failure mode effects analysis for the preventive maintenance of an electrostatic precipitator that was developed for reducing fine dust particles emitted from the 2,427 kW marine diesel engines in ships with a gross tonnage of 999 tons. With regard to risk priority, failure mode 241 (poor dust capture efficiency) was the highest, with an RPN of 180. It was necessary to determine the high-risk failure mode in the collecting electrode and manage it intensively. This was caused by clearance defects, owing to vibrations and consequent pin loosening. Given that pin loosening is mainly caused by vibrations generated in the hull or equipment, it is necessary to manage the position of pin loosening.

A Study on Safety Assessment for Low-flashpoint and Eco-friendly Fueled Ship (친환경연료 선박의 가스누출 피해저감을 위한 연구)

  • Ryu Bo Rim;Duong Phan Anh;Kang Ho Keun
    • Journal of Navigation and Port Research
    • /
    • v.47 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • To limit greenhouse gas emissions from ships, numerous environmental regulations and standards have been taken into effect. As a result, alternative fuels such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), ammonia, and biofuels have been applied to ships. Most of these alternative fuels are low flashpoint fuels in the form of liquefied gas. Their use is predicted to continue to increase. Thus, management regulations for using low flash point fuel as a ship fuel are required. However, they are currently insufficient. In the case of LNG, ISO standards have been prepared in relation to bunkering. The Society for Gas as a Marine Fuel (SGMF), a non-governmental organization (NGO), has also prepared and published a guideline on LNG bunkering. The classification society also requires safety management areas to be designated according to bunkering methods and procedures for safe bunkering. Therefore, it is necessary to establish a procedure for setting a safety management area according to the type of fuel, environmental conditions, and leakage scenarios and verify it with a numerical method. In this study, as a feasibility study for establishing these procedures, application status and standards of the industry were reviewed. Classification guidelines and existing preceding studies were analyzed and investigated. Based on results of this study, a procedure for establishing a safety management area for bunkering in domestic ports of Korea can be prepared.

A Study on the Performance Comparison of Energy Saving Devices for Handy-size Bulk Carrier (산적화물선의 에너지 저감 장치들의 성능 비교에 관한 연구)

  • Kim, Eok-Kyu;Lee, Kang-Ki;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The environmental regulations for CO2 emissions from the ship have been established recently, and fuel oil price has been increased continuously. In order to overcome these circumstances, Energy Saving Devices (ESDs) have been developed continuously to reduce the fuel oil consumption and improve the propulsive efficiency. This paper describes the trial performance of PBCF (Propeller Boss Cap Fins), SCHNEEKLUTH duct, Asymmetric rudder bulb and Mewis duct applied to handy-size bulk carriers. As a result, SCHNEEKLUTH duct is more effective than other energy saving devices at the reducing the fuel oil consumption and the improvement of the propulsive efficiency. In addition, it is confirmed that SCHNEEKLUTH duct is really effective in the vibration of the deck house. And the fuel oil consumption can also be reduced through main engine de-rating.

Estimation of explosion risk potential in fuel gas supply systems for LNG fuelled ships (액화 천연 가스 연료 선박의 연료 공급 장치 폭발 잠재 위험 분석)

  • Lee, Sangick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.918-922
    • /
    • 2015
  • As international environmental regulations for pollutant and greenhouse gas emissions discharged from ships are being reinforced, it is drawing attention to use LNG as ship fuel. This paper compares the explosion risk potential in the LNG fuel gas supply systems of two types used in marine LNG fuelled vessels. By selecting 8500 TEU class container ships as target, LNG storage tank was designed and pressure conditions were assumed for the use of each fuel supply type. The leak hole sizes were divided into three categories, and the leak frequencies for each category were estimated. The sizes of the representative leak holes and release rates were estimated. The release rate and the leak frequency showed an inverse relationship. The pump type fuel gas supply system showed high leak frequency, and the pressure type fuel gas supply system showed high release rate. Computational fluid dynamics simulation was applied to perform a comparative analysis of the explosion risk potential of each fuel supply system.

A Study on Minimize Method of EPIRB's Error Operation by Improve the Seawater Sensing (해수센싱 방법의 개선에 의한 EPIRB오동작의 최소화방안 연구)

  • Lee, Young-Soo;Choi, Jo-Cheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.1978-1982
    • /
    • 2006
  • The EPIRB overcame the limitations of the conventional marine communication systems, the false distress calls by EPIRB systems internationally account for about 94 percent of the total calls because of the different usages of EPIRB systems with manufacturers, users' errors, and systems' faults. To resolve these problems, international bodies and manufacturers are developing many measures to reduce those error emissions. In conventional systems, the distress call was sent immediately after the EPIRB is removed from the automatic release system. Taking into account the properties of the system, however manufacturers improved the operation so that the distress call is sent only when the EPIRB is released and then immersed into water. In spite of these efforts, the error emissions have not significantly reduced. In this study, the domestic and international technical regulations and standards for the COSPAS-SARSAT and satellite EPIRB systems were reviewed, and a bridge-type water detection sensor was developed to minimize the error emission from EPIRB.

A Study on the Development Trends of Polymer Electrolyte Membrane Fuel Cells and Application to Ships (국내외 PEMFC 개발 동향 및 선박 적용에 관한 고찰)

  • Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.657-666
    • /
    • 2022
  • The International Maritime Organization(IMO) recommends the active implementation of national policies on technological development and energy efficiency to reduce Green House Gas (GHG) in the international shipping sector. Such IMO environmental regulation policies have a great impact on the entire shipping sector and are also a heavy burden on ship's owners. The most reasonable way to curb GHG emissions from ships comes down to the development of zero-emission ships. In other words, the development of a fuel cell ship (FCS) driven by an eco-friendly fuel is an alternative that can escape the IMO regulations. Countries in Asia, Northern America, and Europe independently develop and produce PEMFC, and are pursuing international standardization by acquiring approval in principle from an internationally accredited registration authority. Currently, there are three types of fuel cells (FC) that are recommended for ships: a Polymer Electrolyte Membrane Fuel Cell (PEMFC), a Molten Carbonate Fuel Cell (MCFC), and a Solid Oxide Fuel Cell (SOFC). In this study, PEMFC, which is expected to grow continuously in the global FC market, was analyzed domestic and international development trends, specifications, performance, and empirical cases applied to ships. In addition, when applying PEMFC to ships, it was intended to suggest matters to be considered and the development direction.

Detection of Abnormal Ship Operation using a Big Data Platform based on Hadoop and Spark (하둡 및 스파크 기반 빅데이터 플랫폼을 이용한 선박 운항 효율 이상 상태 분석)

  • Lee, Taehyeon;Yu, Eun-seop;Park, Kaemyoung;Yu, Seongsang;Park, Jinpyo;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.82-90
    • /
    • 2019
  • To reduce emissions of marine pollutants, regulations are being tightened around the world. In the shipbuilding and shipping industries, various countermeasures are being put forward. As there are limits to applying countermeasures to ships already in operation, however, it is necessary for these vessels to use energy efficiently. The sensors installed on ships typically gather a very large amount of data, and thus a big data platform is needed to manage and analyze the data. In this paper, we build a big data analysis platform based on Hadoop and Spark, and we present a method to detect abnormal ship operation using the platform. We also utilize real ship operation data to discuss the data analysis experiment.