International Journal of Internet, Broadcasting and Communication
/
제15권4호
/
pp.178-184
/
2023
AI image generation technology has become a popular research direction in the field of AI, which is widely used in the field of digital art and conceptual design, and can also be used in the process of 3D texture mapping. This paper introduces the production process of 3D texture mapping using AI image technology, and discusses whether it can be used as a new way of 3D texture mapping to enrich the 3D texture mapping production process. Two AI deep learning models, Stable Diffusion and Midjourney, were combined to generate high-quality AI textures. Finally, the lmage to material function of substance 3D Sampler was used to convert the AI-generated textures into PBR 3D texture maps. And applied in 3D environment. This study shows that 3D texture maps generated by AI image generation technology can be used in 3D environment, which not only has short production time and high production efficiency, but also has rich changes in map styles, which can be quickly adjusted and modified according to the design scheme. However, some AI texture maps need to be manually modified before they can be used. With the continuous development of AI technology, there will be great potential for further development and innovation of AI-generated image technology in the 3D content production process in the future.
본 논문에서는 게임 엔진에서 사용되는 노말맵(Normal Map)의 원리와 그 응용 방식에 대해 연구하였다. 노말맵은 게임에서 하이 폴리곤 모델링에 적용되는 조명 적용 데이터를 로우 폴리곤에 적용할 수 있는 기술로, 하이 폴리곤 모델링의 벡터 방향 데이터를 텍스쳐로 저장하여 로우 폴리곤에 적용해서 벡터 방향을 텍셀단위로 조정할 수 있게 한다. 여기에서는 게임에서의 노말맵 저장 방식과 연산 방식에 대해 소개하고 이를 응용하여 최적화 시킬 수 있는 방법에 대해 연구한다.
Texture provides an important acurce of information about the threedicensfornarry information of visible surface particulary for stationary conccular views. To recover three dicmensinoary information, the distorging effects of pro jection must be distinguished from properties of the texture on which the distrortion acts. In this paper, we show an approximated maximum likelihood estimation method by which we find surface oriemtation of the visible surface in gaussian sphere using local analysis of the texture, In addition assuming that an orthographic projection and a circle is an image formation system and a texel(texture element)respectively we derive the surface orientation from the distribution of variation by means of orthographic pro jemction of a tangent directon which exstis regulary in the are length of a circle we present the orientation parameters of textured surface with saint and tilt and also the surface normal of the resvlted surface orimentation as needle map. This algorithm was applied to geograghic contour and synthetic textures.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권7호
/
pp.3217-3238
/
2018
In this paper, a depth image up-sampling method is put forward by using pixel classifying and jointed bilateral filtering. By analyzing the edge maps originated from the high-resolution color image and low-resolution depth map respectively, pixels in up-sampled depth maps can be classified into four categories: edge points, edge-neighbor points, texture points and smooth points. First, joint bilateral up-sampling (JBU) method is used to generate an initial up-sampling depth image. Then, for each pixel category, different refinement methods are employed to modify the initial up-sampling depth image. Experimental results show that the proposed algorithm can reduce the blurring artifact with lower bad pixel rate (BPR).
본 논문에서는 HVS(Human Visual System)와 신경회로망 중 SOM(Self-Organizing Map)을 이용하여 DWT 영역에서 영상에 적응적인 워터마킹 알고리즘을 제안한다. HVS는 brightness sensitivity와 texture sensitivity의 두가지 특성으로 설명될 수 있다. SOM은 영상의 지역적인 특징들을 얻는데 사용된다. 따라서 HVS와 SOM을 이용하여 삽입되는 워터마크의 최적의 강도와 길이를 결정한다. 실험을 통해 제안한 방법이 최적의 워터마크 강도와 길이를 제공하며 비가시성 테스트에서 우수함과 다양한 공격에 강인함을 알 수 있다.
3D virtual modeling such as creation of a cyber city or landscape, or making a 3D GIS requires realistic textures. Automatic texture extraction using close range images is not yet efficient or easy in terms of data acquisition and processing. In this paper, common problems associated with automatic texture extraction from aerial photographs are explored. The ZI-buffer, which has depth and facet ID fields, is proposed to remove hidden pixels. The ZI-buffer algorithm reduces memory burden and identifies visible facets. The correct spatial resolution for facet gridding is tested. Error pixels in the visibility map were removed by filtering.
It is very important to inspect color of printed texture in the textile process. To distinguish the color of the printed texture, RGB color values obtained from a scanner must be transformed to the standard colorimetric system used in the textile industry. It is XYZ color system that is defined by CIE(Commission Internationale do 1Eclairage). The mapping from RGB to XYZ color values is not simple and the scanner has even a positional deviation of RGB colors. In this paper an automatic color inspection method using a general scanning machine is presented. We used a U(neural network) model to map RGB to XYZ and compensate the positional error. In the real experiments, this inspection system shows to get very exact XYZ values from the traditional scanner regardless of the measuring position.
최근의 지형시각화 연구에서는 대용량 데이터를 실시간에 처리하기 위하여 여러 가지 상세단계조절 기법을 사용한다. 하지만 상세단계조절을 통한 메쉬 간략화 과정에서 발생하는 기하오차 때문에 연속된 프레임에서 기하파핑 현상이 열어난다. 본 논문에서는 거칠기맵과 편향맵을 이용하여 기하파핑 현상을 효과적으로 줄일 수 있는 방법을 제안한다. 거칠기맵과 편향맵은 지형 메쉬를 구성하는 정점이 적은 기하오차를 가지는 위치로 이동 시켜주는 역할을 한다. 거칠기맵과 편향맵은 텍스쳐로 저장되기 때문에 GPU에서 사용하기 적합하다. 또한 편향맵을 이용한 정점 이동 연산은 GPU에서 수행되므로 병렬처리를 통한 빠른 시각화가 가능하다.
전처리는 영상의 질을 개선하거나 영상을 특정한 응용 목적에 알맞도록 변환시키는 등의 영상 처리를 의미한다. Depth 카메라로부터 획득한 화소단위의 8비트 깊이 정보 (depth map) 에는 depth 카메라의 특성상 잡음으로 생각할 수 있는 많은 성분들이 포함되어 있고, RGB 정보에서의 윤곽선에 비해 물체의 특성이나 조명 조건에 의해서 왜곡되어 나타난다. 일반적으로 잡음 제 거 필터가 사용되지만, 이는 깊이 정보 내의 잡음만을 줄이는 역할을 하기 때문에 깊이 정보의 왜곡된 윤곽선 처리는 하지 못 하고 있다. 본 논문에서는 깊이 정보의 잡음을 줄이는 동시에 RGB 정보의 윤곽선을 이용하여 깊이 정보의 왜곡된 윤곽선을 개선하는 알고리즘을 제안함으로써 다시점 입체 영상 생성 시 오차를 줄이고자 한다.
영상으로부터 중요 객체를 구하는 Saliency Map은 현재 영상처리 분야에서 가장 활발한 연구 분야이다. 이와 관련한 여러 연구가 진행되어가고 있으나 Saliency Map의 객체를 추출하는 것이 어려운 상황이다. 본 논문에서는 제안하는 SLIC와 색상차, 영역간 거리, texture 정보를 이용하여 객체 추출하는 방법으로 Saliency Map을 개선하고자 한다. 실험결과는 본 논문에서 제안하는 방법을 통해 영상의 모든 영역이 아닌 중앙에 있는 영역을 중점으로 주요 객체를 추출하는 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.