• Title/Summary/Keyword: Map recognition

Search Result 497, Processing Time 0.027 seconds

Positioning of Smart Speakers by Applying Text Mining to Consumer Reviews: Focusing on Artificial Intelligence Factors (텍스트 마이닝을 활용한 스마트 스피커 제품의 포지셔닝: 인공지능 속성을 중심으로)

  • Lee, Jung Hyeon;Seon, Hyung Joo;Lee, Hong Joo
    • Knowledge Management Research
    • /
    • v.21 no.1
    • /
    • pp.197-210
    • /
    • 2020
  • The smart speaker includes an AI assistant function in the existing portable speaker, which enables a person to give various commands using a voice and provides various offline services associated with control of a connected device. The speed of domestic distribution is also increasing, and the functions and linked services available through smart speakers are expanding to shopping and food orders. Through text mining-based customer review analysis, there have been many proposals for identifying the impact on customer attitudes, sentiment analysis, and product evaluation of product functions and attributes. Emotional investigation has been performed by extracting words corresponding to characteristics or features from product reviews and analyzing the impact on assessment. After obtaining the topic from the review, the effect on the evaluation was analyzed. And the market competition of similar products was visualized. Also, a study was conducted to analyze the reviews of smart speaker users through text mining and to identify the main attributes, emotional sensitivity analysis, and the effects of artificial intelligence attributes on product satisfaction. The purpose of this study is to collect blog posts about the user's experiences of smart speakers released in Korea and to analyze the attitudes of customers according to their attributes. Through this, customers' attitudes can be identified and visualized by each smart speaker product, and the positioning map of the product was derived based on customer recognition of smart speaker products by collecting the information identified by each property.

Crab Region Extraction Method from Suncheon Bay Tidal Flat Images (순천만 갯벌 영상에서 게 영역 추출 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1197-1206
    • /
    • 2019
  • Suncheon Bay is a very important natural resource and various efforts have been made to protect it from the environmental pollution. Although the project to monitor the environmental changes in periodically by observing the creatures in tidal flats is processing, it is being done inefficiently by people directly observing it. In this paper, we propose an object segmentation method that can be applied to the method to automatically monitor the living creatures in the tidal flats. In the proposed method, a foreground map representing the location of objects is obtained by using a temporal difference method, and a superpixel method is applied to detect the detailed boundary of an image. Finally the region of crab is extracted by combining the foreground map and the superpixel information. Experimental results show that the proposed method separates crab regions from a tidal flat image easily and accurately.

A Haptic Rendering Technique for 3D Objects with Vector Field (벡터 필드를 가진 3차원 오브젝트의 햅틱 렌더링 기법)

  • Kim, Lae-Hyun;Park, Se-Hyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.4
    • /
    • pp.216-222
    • /
    • 2006
  • Vector field has been commonly used to visualize the data set which is invisible or is hard to explain. For instance, it could be used to visualize scientific data such as the direction and amount of wind and water field, transfer of heat through thermally conductive materials, and electromagnetic field. In this paper, we present a technique to enable intuitive recognition of the data though haptic feedback along with visual feedback. To add tactile information to graphical vector field, we model a haptic vector field and then apply it to the haptic map to guide a user to destination and haptic simulation of water field on 2D images whish can be used ill everyday life. These systems allow one to recognize vector information intuitively through haptic interface. We expect that the haptic rendering technique of vector field can be applied to various applications such as education, training, and entertainment.

Classification of Consonants by SOM and LVQ (SOM과 LVQ에 의한 자음의 분류)

  • Lee, Chai-Bong;Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 2011
  • In an effort to the practical realization of phonetic typewriter, we concentrate on the classification of consonants in this paper. Since many of consonants do not show periodic behavior in time domain and thus the validity for Fourier analysis of them are not convincing, vector quantization (VQ) via LBG clustering is first performed to check if the feature vectors of MFCC and LPCC are ever meaningful for consonants. Experimental results of VQ showed that it's not easy to draw a clear-cut conclusion as to the validity of Fourier analysis for consonants. For classification purpose, two kinds of neural networks are employed in our study: self organizing map (SOM) and learning vector quantization (LVQ). Results from SOM revealed that some pairs of phonemes are not resolved. Though LVQ is free from this difficulty inherently, the classification accuracy was found to be low. This suggests that, as long as consonant classification by LVQ is concerned, other types of feature vectors than MFCC should be deployed in parallel. However, the combination of MFCC/LVQ was not found to be inferior to the classification of phonemes by language-moded based approach. In all of our work, LPCC worked worse than MFCC.

3D Multiple Objects Detection and Tracking on Accurate Depth Information for Pose Recognition (자세인식을 위한 정확한 깊이정보에서의 3차원 다중 객체검출 및 추적)

  • Lee, Jae-Won;Jung, Jee-Hoon;Hong, Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.8
    • /
    • pp.963-976
    • /
    • 2012
  • 'Gesture' except for voice is the most intuitive means of communication. Thus, many researches on how to control computer using gesture are in progress. User detection and tracking in these studies is one of the most important processes. Conventional 2D object detection and tracking methods are sensitive to changes in the environment or lights, and a mix of 2D and 3D information methods has the disadvantage of a lot of computational complexity. In addition, using conventional 3D information methods can not segment similar depth object. In this paper, we propose object detection and tracking method using Depth Projection Map that is the cumulative value of the depth and motion information. Simulation results show that our method is robust to changes in lighting or environment, and has faster operation speed, and can work well for detection and tracking of similar depth objects.

Performance Improvement of Automatic Basal Cell Carcinoma Detection Using Half Hanning Window (Half Hanning 윈도우 전처리를 통한 기저 세포암 자동 검출 성능 개선)

  • Park, Aa-Ron;Baek, Seong-Joong;Min, So-Hee;You, Hong-Yoen;Kim, Jin-Young;Hong, Sung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.105-112
    • /
    • 2006
  • In this study, we propose a simple preprocessing method for classification of basal cell carcinoma (BCC), which is one of the most common skin cancer. The preprocessing step consists of data clipping with a half Hanning window and dimension reduction with principal components analysis (PCA). The application of the half Hanning window deemphasizes the peak near $1650cm^{-1}$ and improves classification performance by lowering the false negative ratio. Classification results with various classifiers are presented to show the effectiveness of the proposed method. The classifiers include maximum a posteriori probability (MAP), k-nearest neighbor (KNN), probabilistic neural network (PNN), multilayer perceptron(MLP), support vector machine (SVM) and minimum squared error (MSE) classification. Classification results with KNN involving 216 spectra preprocessed with the proposed method gave 97.3% sensitivity, which is very promising results for automatic BCC detection.

  • PDF

Big Data Architecture Design for the Development of Hyper Live Map (HLM)

  • Moon, Sujung;Pyeon, Muwook;Bae, Sangwon;Lee, Dorim;Han, Sangwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.207-215
    • /
    • 2016
  • The demand for spatial data service technologies is increasing lately with the development of realistic 3D spatial information services and ICT (Information and Communication Technology). Research is being conducted on the real-time provision of spatial data services through a variety of mobile and Web-based contents. Big data or cloud computing can be presented as alternatives to the construction of spatial data for the effective use of large volumes of data. In this paper, the process of building HLM (Hyper Live Map) using multi-source data to acquire stereo CCTV and other various data is presented and a big data service architecture design is proposed for the use of flexible and scalable cloud computing to handle big data created by users through such media as social network services and black boxes. The provision of spatial data services in real time using big data and cloud computing will enable us to implement navigation systems, vehicle augmented reality, real-time 3D spatial information, and single picture based positioning above the single GPS level using low-cost image-based position recognition technology in the future. Furthermore, Big Data and Cloud Computing are also used for data collection and provision in U-City and Smart-City environment as well, and the big data service architecture will provide users with information in real time.

Aerial Video Summarization Approach based on Sensor Operation Mode for Real-time Context Recognition (실시간 상황 인식을 위한 센서 운용 모드 기반 항공 영상 요약 기법)

  • Lee, Jun-Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.6
    • /
    • pp.87-97
    • /
    • 2015
  • An Aerial video summarization is not only the key to effective browsing video within a limited time, but also an embedded cue to efficiently congregative situation awareness acquired by unmanned aerial vehicle. Different with previous works, we utilize sensor operation mode of unmanned aerial vehicle, which is global, local, and focused surveillance mode in order for accurately summarizing the aerial video considering flight and surveillance/reconnaissance environments. In focused mode, we propose the moving-react tracking method which utilizes the partitioning motion vector and spatiotemporal saliency map to detect and track the interest moving object continuously. In our simulation result, the key frames are correctly detected for aerial video summarization according to the sensor operation mode of aerial vehicle and finally, we verify the efficiency of video summarization using the proposed mothed.

Automatic Response and Conceptual Browsing of Internet FAQs Using Self-Organizing Maps (자기구성 지도를 이용한 인터넷 FAQ의 자동응답 및 개념적 브라우징)

  • Ahn, Joon-Hyun;Ryu, Jung-Won;Cho, Sung-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.432-441
    • /
    • 2002
  • Though many services offer useful information on internet, computer users are not so familiar with such services that they need an assistant system to use the services easily In the case of web sites, for example, the operators answer the users e-mail questions, but the increasing number of users makes it hard to answer the questions efficiently. In this paper, we propose an assistant system which responds to the users questions automatically and helps them browse the Hanmail Net FAQ (Frequently Asked Question) conceptually. This system uses two-level self-organizing map (SOM): the keyword clustering SOM and document classification SOM. The keyword clustering SOM reduces a variable length question to a normalized vector and the document classification SOM classifies the question into an answer class. Experiments on the 2,206 e-mail question data collected for a month from the Hanmail net show that this system is able to find the correct answers with the recognition rate of 95% and also the browsing based on the map is conceptual and efficient.

Comparison of Deep Learning-based CNN Models for Crack Detection (콘크리트 균열 탐지를 위한 딥 러닝 기반 CNN 모델 비교)

  • Seol, Dong-Hyeon;Oh, Ji-Hoon;Kim, Hong-Jin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.113-120
    • /
    • 2020
  • The purpose of this study is to compare the models of Deep Learning-based Convolution Neural Network(CNN) for concrete crack detection. The comparison models are AlexNet, GoogLeNet, VGG16, VGG19, ResNet-18, ResNet-50, ResNet-101, and SqueezeNet which won ImageNet Large Scale Visual Recognition Challenge(ILSVRC). To train, validate and test these models, we constructed 3000 training data and 12000 validation data with 256×256 pixel resolution consisting of cracked and non-cracked images, and constructed 5 test data with 4160×3120 pixel resolution consisting of concrete images with crack. In order to increase the efficiency of the training, transfer learning was performed by taking the weight from the pre-trained network supported by MATLAB. From the trained network, the validation data is classified into crack image and non-crack image, yielding True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), and 6 performance indicators, False Negative Rate (FNR), False Positive Rate (FPR), Error Rate, Recall, Precision, Accuracy were calculated. The test image was scanned twice with a sliding window of 256×256 pixel resolution to classify the cracks, resulting in a crack map. From the comparison of the performance indicators and the crack map, it was concluded that VGG16 and VGG19 were the most suitable for detecting concrete cracks.