DOI QR코드

DOI QR Code

Crab Region Extraction Method from Suncheon Bay Tidal Flat Images

순천만 갯벌 영상에서 게 영역 추출 방법

  • 박상현 (순천대학교 멀티미디어공학과)
  • Received : 2019.09.03
  • Accepted : 2019.12.15
  • Published : 2019.12.31

Abstract

Suncheon Bay is a very important natural resource and various efforts have been made to protect it from the environmental pollution. Although the project to monitor the environmental changes in periodically by observing the creatures in tidal flats is processing, it is being done inefficiently by people directly observing it. In this paper, we propose an object segmentation method that can be applied to the method to automatically monitor the living creatures in the tidal flats. In the proposed method, a foreground map representing the location of objects is obtained by using a temporal difference method, and a superpixel method is applied to detect the detailed boundary of an image. Finally the region of crab is extracted by combining the foreground map and the superpixel information. Experimental results show that the proposed method separates crab regions from a tidal flat image easily and accurately.

순천만은 매우 중요한 자연자원으로 환경오염으로부터 이를 보호하기 위한 노력들이 이루어지고 있다. 순천만 갯벌에 서식하는 생물들을 주기적으로 관찰하여 환경의 변화를 모니터링하는 사업이 진행되고 있으나 사람이 직접 관찰하는 비효율적인 방법으로 이루어지고 있다. 본 논문에서는 갯벌에 서식하는 생물들을 자동으로 모니터링하기 위한 방법에 적용될 수 있는 객체 분할 방법을 제안한다. 제안하는 방법에서는 차 영상을 이용하여 객체의 위치 정보를 나타내는 전경 맵을 구하고, 영상의 세밀한 경계 검출을 위해 슈퍼픽셀 방법을 적용한다. 전경 맵과 슈퍼픽셀 정보를 이용하여 최종적으로 갯벌 영상에서 게의 영역을 추출한다. 실험 결과는 제안하는 방법이 간단하면서도 정확하게 갯벌 영상에서 게 영역을 분리하는 것을 보여준다.

Keywords

References

  1. C. Lee, "Design by Improved Energy Efficiency MAC Protocol based on Wireless Sensor Networks," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 3, 2017, pp. 439-444. https://doi.org/10.13067/JKIECS.2017.12.3.439
  2. S. Garcia, D. F. Larios, J. Barbancho, E. Personal, J. M. Mora-Merchan, and C. Leon, "Heterogeneous LoRa-Based Wireless Multimedia Sensor Network Multiprocessor Platform for Environmental Monitoring," Sensors, vol. 19, no. 16, 2019, pp. 3446-3473. https://doi.org/10.3390/s19163446
  3. Y. Wang, X. Zhang, J. Chen, Z. Cheng, and D. Wang, "Camera sensor-based contamination detection for water environment monitoring," Environmental Science and Pollution Research, vol. 26, no. 3, 2019, pp. 2722-2733. https://doi.org/10.1007/s11356-018-3645-z
  4. K. Nam, "A Study on Yeong-san River Ecological Environment Monitoring based on IoT," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 2, 2015, pp. 203-210. https://doi.org/10.13067/JKIECS.2015.10.2.203
  5. Y. Fan, S. Chen, B. Zhao, S. Yu, H. Ji, and C. Jiang, "Monitoring tidal flat dynamics affected by human activities along an eroded coast in the Yellow River Delta, China," Environmental monitoring and assessment, vol. 190, no. 7, pp. 395-396.
  6. J. Choi, Y. Baek, and J. Choi, "Robust Salient Moving Object Detection with Light-Computational Load," IFAC Proceedings Volumes, vol. 41, no. 2, 2008, pp. 2371-2376. https://doi.org/10.3182/20080706-5-KR-1001.00400
  7. C. Chang, T. Chia, and C. Yang, "Modified temporal difference method for change detection," Optical Engineering, vol. 44, no. 2, 2005, pp. 28-31.
  8. L. Marti-Lopez, H. Cabrera, R. Martinez-Celorio, and R. Gonzalez-Pena, "Temporal difference method for processing dynamic speckle patterns," Optics Communications, vol. 283, no. 24, 2010, pp. 4972-4977. https://doi.org/10.1016/j.optcom.2010.07.073
  9. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, "SLIC superpixels compared to state-of-the-art superpixel methods", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 34, no. 11, 2012, pp. 2274-2282. https://doi.org/10.1109/TPAMI.2012.120
  10. S. Park, "Water region segmentation method using graph algorithm," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 4, 2018, pp. 787-794. https://doi.org/10.13067/JKIECS.2018.13.4.787