• Title/Summary/Keyword: Manufacturing system in fields

Search Result 255, Processing Time 0.031 seconds

The Strain Measurement of Butt Welded Zone by the Laser System (레이저 계측에 의한 맞대기 용접부의 스트레인 측정)

  • 성백섭;차용훈;박창언;김일수;김덕중;이연신;손준식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.155-161
    • /
    • 2001
  • Currently knowledge of strain in welds has mainly been obtained from strain gaging method; that is directly attaching most of the material to the gage. The very few non-contact method are still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. The dissertation is on the measurement of the strain caused by the characteristics and the temperature changes of the TIG welded zone which is used with 3D ESPI system that is functionally modified through the laser ESPI system. This system employed the aluminum sheet-metal which are mainly used for the steel plate such as for the electronics, chemistry, food instrument and electronic appliances.

  • PDF

Characteristics of Surface Roughness in Micro fuming using PCD Tools (PCD공구를 이용 미소가공시 표면거칠기 특성)

  • 한복수;이소영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.31-38
    • /
    • 2001
  • This paper deals with the micro turning property of setting angle using diamond tool. The bed of the system has used the granite which has the thermal and vibrational characteristics superior to the cast iron bed for the common machine tool. To minimize the inner and outer vibration of the fuming system, an air pad system was manufactured and tested. The aero-static spindle system which has the excellent rotation accuracy was designed and manufactured. As a result of the micro-cutting test on aluminum alloy, tool setting angel have effected on surface roughness. From the results, the micro-cutting conditions hope to provide the useful actual data using in industrial fields.

  • PDF

A Study on the Development of SFF System based on 3DP Process (3차원 프린팅(3DP) 공정을 기반으로 한 임의형상제작(SFF) 시스템 개발에 관한 연구)

  • Lee Won-Hee;Kim Jung-Su;Lee Min-Cheol;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.168-176
    • /
    • 2006
  • Nowadays, Three dimensional printing (3DP) technique that is one of solid freeform fabrication (SFF) technology has been notable issue, and has been applied by various fields. The SFF system can fabricate three dimensional objects of solid freeform with high speed and low cost using ink jet printing technology. In this research, a SFF system to analyze 3DP process technology is developed. We applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm and minimized position error to the developed SFF system. We analyzed and optimized process variables such as jetted volume, layer thickness, powder bed and so on experimentally. Also. the dimensional error of a developed SFF system is evaluated. Finally, the feasibility of application to bio manufacturing is presented through successful fabrication of teeth and cranium model.

A Fundamental Study on Bingham Characteristics of Electro-Rheological Fluids for Control System Application (제어 시스템 적용을 위한 ER유체의 빙햄 특성에 관한 기초적 연구)

  • Jang, Sung-Cheol;Jeong, Young-Bin;Jang, Gil-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.86-92
    • /
    • 2004
  • This paper describes the properties of temperature-viscosity characteristics of hydrous and anhydrous electro-rheological fluids containing starch and titanium particle in silicone oil ER effects arise from electrostatic forces between the starch particles and titanium particles dispersed to the electrically insulating silicone oil induced when electric field is applied ER fluids under electric field control have been found to provide resonable estimates of ER fluid viscosity variation characteristics. Yield shear stress of the ER fluids were measured the couette cell type rheometer as a function of electrlc fields. The outer cup is connected to positive electrode(+) and bob becomes ground(-). The electrie field is applied by high voltage DC power supply. In this experiment shear rates were increased from 0 to 200 $s^{-1}$ in 2 minutes. The ER fluid's viscosity change is very small and stable at the temperature range of $40^{\circ}C$ to $60^{\circ}C$. Therefore, applications of a new ER fluid to control systems application are suitable.

  • PDF

A Study on the Structural and Heat Transfer Analysis of the 500W-Class Optical Fiber Laser Output Transmission End Cap Module (500W급 광섬유 레이저 출력 전송 모듈 End Cap의 구조 및 열전달 해석)

  • Gao, Jia-Chen;Kim, Jae-Yeol;Heo, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.135-139
    • /
    • 2017
  • In recent years, the optical fiber laser has been widely used in industrial fields due to its excellent economical efficiency and its suitability for industrial applications. This usage has increased even further since the KW class Laser was developed. In this paper, structural analysis and heat transfer analysis of a 500W class optical fiber laser end cap module was performed. The stability of end cap housing with the efficient heat dissipation structure of a 500W-class end cap was evaluated. This research determined the optimal design that should be applied to the design and evaluation of future KW class laser output modules.

Fabrication and Characterization of Carbon Long-Fiber Thermoplastic Composites using the LFT-D System (LFT-D 시스템을 이용한 탄소 장섬유 열가소성 복합재의 제조 및 인장특성 분석)

  • Shin, Yujeong;Jeung, Han-Kyu;Park, Si-Woo;Park, Dong-Wook;Park, Yeol;Jung, Jin-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.25-30
    • /
    • 2017
  • Carbon-fiber-reinforced plastic (CFRP) composite materials have been widely used in various industrial fields because the design variables can be adjusted according to the application of the required structure. Thermosetting and thermoplastic resins are used as the base materials of CFRP composites for the lightweight construction of automotive components. Thermoplastics have several advantages such as no curing and recyclability compared to thermosetting resin. In this study, CFRP composites were made using the Long-Fiber Thermoplastic-Direct (LFT-D) process. The LFT-D process includes an in-line production system that directly impregnates a thermoplastic resin, extrudes the composite material, and molds it. This process increases the strength and decreases the molding time. The tensile strength characteristics on the mechanical properties of CFRP were analyzed according to the parameters of LFT-D based on thermoplastics. To analyze the properties of CFRP, the specimens were prepared based on the tensile test standard ASTM 3039 of composite materials.

Comparison Analysis of Multivariate Process Capability Indices (다변량 공정능력지수들의 비교분석)

  • Moon, Hye-Jin;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.106-114
    • /
    • 2019
  • Recently, the manufacturing process system in the industrial field has become more and more complex and has been influenced by many and various factors. Moreover, these factors have the dependent correlation rather than independent of each other. Therefore, the statistical analysis has been extended from the univariate method to the multivariate method. The process capability indices have been widely used as statistical tools to assess the manufacturing process performance. Especially, the multivariate process indices need to be enhanced with more useful information and extensive application in the recent industrial fields. The various multivariate process capability indices have been studying by many researchers in recent years. Hence, the purpose of the study is to compare the useful and various multivariate process capability indices through the simulation. Among them, we compare the useful models of several multivariate process capability indices such as $MC_{pm}$, $MC^+_{pm}$ and $MC_{pl}$. These multivariate process capability indices are incorporates both the process variation and the process deviation from target or consider the expected loss caused by the process deviation from target. Through the computational examples, we compare these process capability indices and discuss their usefulness and effectiveness.

Applying 3D Printing Spare Parts to Operation Field (3D 프린팅 수리부품의 작전현장 적용을 위한 방안)

  • Yoo, Seunghee;Hur, Jangwan;Lee, Heungryong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.54-61
    • /
    • 2019
  • The 3D printing technology took the second place within the top ten rising technologies at the World Economic Forum in 2012. It arose as a core technology that would enable transformation in the manufacturing industry and develop new markets through the change of existing industry paradigms. Leading countries, like the United States of America, are actively expanding the use of 3D printing technologies within their defense areas. In order to utilize the technology within her defense areas, the Republic of Korea is planning to acquire defense spare parts manufacturing technologies and nurture professional defense personnel specializing in the 3D printing technology. Hence, this study offers various methods to efficiently apply reliable 3D printing spare parts to operation fields in the future by utilizing spare parts localization development management methods within existing weapon systems' development, manufacturing and sustainment phases.

Controller Design and Imbalance Vibration Analysis in Active Magnetic Bearing System (능동자기베어링 시스템의 제어기 설계 및 불균형 진동 분석)

  • 강종규;신우철;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.457-462
    • /
    • 2004
  • Active magnetic bearings (AMB's) have become practical in many industrial fields and numbers of studies for magnetic bearing systems have been reported. However, AMB systems are open-loop unstable and thus require feedback control for robust stabilization and performance. In this paper, first, a rotation of the rotor around the inertial axis is considered and a rigorous modeling of a magnetic bearing system in which the rotation of the rotor is on its axis of inertia is developed. Next, to stabilize the AMB system a PID controller is used and experimentally analyze its rotational response.

  • PDF

Molecular Dynamics Simulation for Size-Dependent Properties and Various Nanoscale Phenomena

  • Seungho;Joon Sik;Young Ki;Sung San;Jung Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.28-35
    • /
    • 2004
  • Stimulated by novel phenomena observed in molecular aggregates, recent developments in engineering fields of microscopic scales are creating tremendous opportunities for future nanotechnology-based applications. Investigation in the field involves sub-nanosecond or sub-micrometer interactions between extremely small systems, but researches, to date in these physical extremes have been quite limited. Here, we shed light on some of nanoscale phenomena using molecular dynamics simulation: visualization of various phenomena of nanoscales and exploration of size-dependent mechanical properties.