• Title/Summary/Keyword: Manufacturing system

Search Result 8,692, Processing Time 0.035 seconds

Application of Axiomatic Design Theory in Manufacturing System Design (공리적 설계 기법을 이용한 생산시스템 설계 지원 방안에 대한 고찰)

  • 백태진;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.82-86
    • /
    • 2004
  • To cope with the challenge from global market characterized by frequent changes in requirements, manufacturing enterprise should be able to promptly adjust its manufacturing system accordingly. Therefore, it is important to provide manufacturing system designer with an appropriate methodology to (re-)design a manufacturing system subject to requirements change. Axiomatic design theory focuses design activity mainly on functional consideration rather than physical, and has been known as effective especially in the conceptual design phase. This paper introduces an approach to apply the axiomatic design principle to manufacturing system design. It is shown that a new design solution can be reached quickly by finding design parameters for the added or revised functional requirements and thus achieving a set of functional requirements as well as design parameters that satisfy the independence axiom. Some illustrative examples are also given.

  • PDF

Advanced Planning System: A Prerequisite for Achieving Build-to-Order Environment (주문생산에 필수적인 진보적 생산계획 시스템)

  • 강윤식;이휘재;문광원;노성관;임헌욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.93-96
    • /
    • 2002
  • The manufacturing paradigm has shifted dramatically over the past decade from “push” or mass production mode to “pull” or customer-driven, order-based manufacturing mode, as multitudes of customers now demand mass customization of configurable products. As a means to achieve such rapidly responsive manufacturing system, Advanced Planning System (APS) has become an essential software tool for achieving modern “build-to-order” and “configure-to-order” manufacturing environment. APS enables manufacturers to respond to variety of customer demands In real time by instantly configuring manufacturing processes based on specifications described in each purchase orders and providing capable-to-promise information directly to customer by performing rapid “what-if” manufacturing simulated scenarios. This paper discusses the working of such system as well as the business processes that incorporate such systems to enable efficient “build-to-order” environment.

  • PDF

Characteristics Analysis of Sustainable Manufacturing System and V&V Strategy (지속가능생산시스템의 특성 분석 및 V&V 전략)

  • Yoon, SooCheol;Suh, Suk-Hwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.51-58
    • /
    • 2014
  • Manufacturing industry is one of the core sectors providing national competitiveness and economical impact Today's manufacturing industry is required to fulfill so called Sustainable Factory paradigm from the perspectives of environmental and social development. To cope with the requirements, researches for achieving sustainability in manufacturing system are actively carried out in the world from various perspectives. In this paper, we analyzed systemic characteristics of sustainable manufacturing system, and developed verification & validation strategy based on traceability between system requirement and functionality. The developed methods were applied to a European Project called the Foundation for the Sustainable Factory of the Future (FoFdation). Specifically, we analyzed and verified the deliverables of FoFdation by deriving systems architecture in terms of Component, Function, and Items. The results indicated that the FoFdation is pretty much compliant with the concept of Ubiquitous Factory, and can be used as an International Reference Model for the Smart Factoy, a world wide hot topic under the paradigm of IOT (Internet-Of-Things), if information processing part is supplemented.

The Integrated Design and Analysis of Manufacturing Lines (I) - an Automated Modeling & Simulation System for Digital Virtual Manufacturing (제조라인 통합 설계 및 분석(I) - 디지털 가상생산 기술 적용을 위한 모델링 & 시뮬레이션 자동화 시스템)

  • Choi, SangSu;Hyeon, Jeongho;Jang, Yong;Lee, Bumgee;Park, Yangho;Kang, HyoungSeok;Jun, Chanmo;Jung, Jinwoo;Noh, Sang Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.138-147
    • /
    • 2014
  • In manufacturing companies, different types of production have been developed based on diverse production strategies and differentiated technologies. The production systems have become smart, factories are filled with unmanned manufacturing lines, and sustainable manufacturing technologies are under development. Nowadays, the digital manufacturing technology is being adopted and used in manufacturing industries. When this technology is applied, a lot of efforts, time and cost are required and training professionals in-house is limited. In this paper, we introduce e-FEED system (electronic based Front End Engineering and Design) that is the integrated design and analysis system for optimized manufacturing line development on virtual environment. This system provides the functions that can be designed easily using library and template based on standardized modules and analyzed automatically the logistic and capacity simulation by one-click and verified the result using visual reports. Also, we can review the factory layout using automatically created 3D virtual factory and increase the knowledge reuse by e-FEED system.

Business Intelligence System for Manufacturing Production Information System (제조생산 정보화 시스템을 위한 BI 시스템)

  • Chun, Byung-Tae
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.231-235
    • /
    • 2012
  • Manufacturing Information System is a information system which supports the activities such as production planning, workflow management, work stage control. Manufacturing fields are showing new properties in today such as digital information, globalization, integration, to make sophisticated production. In this paper, we descibe major issues in current systems. Eventually, we propose major factors to adapt for new changes and BI systems to support manufacturing production information system based on the major factors.

Auto-Generation of Diagnosis Program of PLC-based Automobile Body Assembly Line for Safety Monitoring (PLC기반 차체조립라인의 안전감시를 위한 진단프로그램 생성에 관한 연구)

  • Park, Chang-Mok
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2010
  • In an automated industry PLC plays a central role to control the manufacturing system. Therefore, fault free operation of PLC controlled manufacturing system is essential in order to maximize a firm's productivity. On the contrary, distributed nature of manufacturing system and growing complexity of the PLC programs presented a challenging task of designing a rapid fault finding system for an uninterrupted process operation. Hence, designing an intelligent monitoring, and diagnosis system is needed for smooth functioning of the operation process. In this paper, we propose a method to continuously acquire a stream of PLC signal data from the normal operational PLC-based manufacturing system and to generate diagnosis model from the observed PLC signal data. Consequently, the generated diagnosis model is used for distinguish the possible abnormalities of manufacturing system. To verify the proposed method, we provided a suitable case study of an assembly line.

A Study on the OKITPN (Object & Knowledge- based Interval Timed Petri-Net) for AMS (Agile Manufacturing System) Modeling (민첩생산시스템 모델링을 위한 OKITPN의 이론적 고찰)

  • 양광모;박재현;강경식
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.05a
    • /
    • pp.299-304
    • /
    • 2003
  • Manufacturing companies must possess a new type of production system with characteristics of reconfigurability, reusability and scalability (Dove 1995), i.e. an agile manufacturing system. Such system will allow flexibility not only in producing a variety of part, but also in changing the system itself, which is a difference form flexible manufacturing systems. A fundamental early step in the reconfiguring process for agile manufacturing system is to develop a model that adequately describes the proposed systems, in order to be able to study and evaluate the impact of the reconfiguring decision on the system performance, before its construction. Therefore, in this paper, an Object & Knowledge-based Interval Timed Petri-Net (OKITPN) approach is proposed.

  • PDF

The Implementation of BPEL based Workflow Management System in Manufacturing System Automation (제조시스템자동화에 있어서 BPEL 기반 워크플로우 관리시스템의 적용)

  • Park, Dong-Jin;Jang, Jae-Jin;Jang, Byoung-Hoon;Kim, Soo-Kyoung
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.270-276
    • /
    • 2009
  • This paper outlines opportunities and challenges in the Implementation of BPEL based WFMS(Work Flow Management System) for the MES(Manufacturing Execution Systems) level in semiconductor manufacturing. At present, the most MES that are composed of several hundreds of applications in semiconductor wafer fabrication shop have the same problems as others about flexibility and adaptability. When a plant has to produce new product mix, remodel the manufacturing execution process, or replace obsolete equipments, the principal road blocks for responding to new manufacturing environment are inflexible communication infrastructure among the manufacturing process components and the difficulty in porting existing application software to new configurations. In this paper, the issues about BPEL standard, used for the flexibility of Workflow Management System, are presented. We introduce the integrated development framework named nanoFlow which is optimized for developing the BPEL based WFMS application for automated manufacturing system. We describe a WFMS implemented with using nanoFlow framework, review and evaluate the system in terms of flexibility and adaptability.

  • PDF

A Case Study on Lead Time Improvement Using a Simulation Approach (시뮬레이션 방식을 이용한 리드 타임 개선 사례 연구)

  • Ro, Wonju;Sim, Jaehun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.140-152
    • /
    • 2021
  • During the shift from gasoline vehicles to electric ones, auto parts manufacturing companies have realized the importance of improvement in the manufacturing process that does not require any layout changes nor extra investments, while maintaining their current production rate. Due to these reasons, for the auto part manufacturing company, I-company, this study has developed the simulation model of the PUSH system to conduct a process analysis in terms of production rate, WIP level, and logistics work's utilization rate. In addition, this study compares the PUSH system with other three manufacturing systems -KANBAN, DBR, and CONWIP- to compare the performance of these production systems, while satisfying the company's target production rate. With respect to lead-time, the simulation results show that the improvement of 77.90% for the KANBAN system, 40.39% for the CONWIP system, and 69.81% for the DBR system compared to the PUSH system. In addition, with respect to WIP level, the experimental results demonstrate that the improvement of 77.91% for the KANBAN system, 40.41% for the CONWIP system, and 69.82% for the DBR system compared to the PUSH system. Since the KANBAN system has the largest impacts on the reduction of the lead-time and WIP level compared to other production systems, this study recommends the KANBAN system as the proper manufacturing system of the target company. This study also shows that the proper size of moving units is four and the priority allocation of bottleneck process methods improves the target company's WIP and lead-time. Based on the results of this study, the adoption of the KANBAN system will significantly improve the production process of the target company in terms of lead-time and WIP level.

The Development of Virtual Simulator for Agile Manufacturing System (민첩 생산 시스템을 위한 가상 시뮬레이터 개발)

  • 차상민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.478-483
    • /
    • 2000
  • In this study to cope with the decreasing product's life-cycle a virtual simulator to realize the simulation environment similar to a real manufacturing line is developed. The developed simulator plays a role in reducing the product conversion time by alternating manufacturing components and work plans on the simulation as manufacturing lines change and actuating a virtual manufacturing lines change and actuating a virtual manufacturing line before a real production. The developed simulator realized a virtual manufacturing line on the simulation using various manipulators and work cells as manufacturing components. Also It can be shown that the simulator can cope with rapid change of a manufacturing line by developing a interface that a separate process is managed for each manufacturing module and a manipulator component and a work cell are changed for a user to become convenient to teach tasks of each work module. using Microsoft Visual C++ 6.0 and OpenGL of Silicon Graphics for libraries to realize 3-dimensional graphic and constructing a database system, a hybrid type of hierachical and relational model to develop a progra that has efficiency and standardization.

  • PDF