• Title/Summary/Keyword: Manufacturing machine

Search Result 4,216, Processing Time 0.032 seconds

Development of Machine Learning Method for Selection of Machining Conditions in Machining of 3D Printed Composite Material (3D 프린팅 복합소재의 가공에서 가공 조건 선정을 위한 머신러닝 개발에 관한 연구)

  • Kim, Min-Jae;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.137-143
    • /
    • 2022
  • Composite materials, being light-weight and of high mechanical strength, are increasingly used in various industries such as the aerospace, automobile, sporting-goods manufacturing, and ship-building industries. Recently, manufacturing of composite materials using 3D printers has increased. 3D-printed composite materials are made in free-form and adapted for end-use by adjusting the fiber content and orientation. However, research on the machining of 3D printed composite materials is limited. The aim of this study is to develop a machine learning method to select machining conditions for machining of 3D-printed composite materials. The composite material was composed of Onyx and carbon fibers and stacked sequentially. The experiments were performed using the following machining conditions: spindle speed, feed rate, depth of cut, and machining direction. Cutting forces of the different machining conditions were measured by milling the composite materials. PCA, a method of machine learning, was developed to select the machining conditions and will be used in subsequent experiments under various machining conditions.

Determining factor about the regulation compliance of inspection on harmful machine, instrument and equipment (위험기계.기구 및 설비 검사의 규제 순응 결정 요인)

  • Yi, Kwan-Hyung;Oh, Ji-Young;Rhee, Kyung-Yong
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.1
    • /
    • pp.77-84
    • /
    • 2007
  • This study was planned to investigate what the main factor of the regulation compliance of inspection on harmful machine, instrument and equipment by industrial safety and health act is. This study subject was composed of three groups as employers, employees of manufacturing and using the harmful machine and safety inspectors. Manufacturing workplace were 236 places, using workplace were 201 places and the safety inspectors were 100 people. The study subject was sampled by stratified random sampling considering the type of harmful Machine. Data for analysis is collected from each sample using interview with structured questionnaires. Compliance is measured by 2, 3, and 4 point scale composed by 8 sub items such as general perception, understanding, clearness, necessity, relevancy, implementation, penalty, and general compliance of the regulation. The level of 8 items of employer's compliance are not differentiated among three groups. The determining factors for inspection observance of the workplace using the harmful Machine were understanding, penalty and cognized compliance. The determining factors for inspection observance of the workplace manufacturing the harmful Machine were understanding and object conformity. These results show that the strategy to adapt the regulated group to inspection regulation will be the elevation of understanding for regulation first of all.

A Study on Structural Analysis of Integrated Machining Center (집적화된 Machining Center의 구조해석에 관한 연구)

  • Park, Seong-Jin;Lee, Choon-Man;Kim, Woong;Byun, Sam-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • An integrated machining center is developed for high precision and productivity manufacturing. The developed machine is composed of the high precision spindle using ball bearings, the high stiffness bed and the three axis CNC controller with the high resolution AC servo motor. In this paper, structural and modal analysis for the developed machine are carried out to check the design criteria of machine. The analysis is carried out by FEM simulation with using the commercial software, CATIA V5, ANSYS and ARMD. The simulation model of machine is made by shell and solid finite elements. This study also presents the measurement system on the modal analysis of an integrated machining center. The weak part of the machine is found by the analytical evaluation. The results provide with the structural modification data for good dynamic behaviors. And the safety of machine is confirmed by the modal analysis of modified machine design. As this study results can be trustworthy with the analysis of ANSYS and CATIA, integrated machining center can be successfully developed.

A Study on the On-machine Profile Measurement of Large Aspheric Form using Capasitive Sensor (정전용량센서를 이용한 대구경 비구면 형상의 기상측정에 관한 연구)

  • Kim, Geon-Hee;Won, Jonh-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.56-61
    • /
    • 2003
  • This paper described about on-machine profile measurement of aspheric surfaces using contact probing technique in ultra precision machine. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime using a circle leaf spring mechanism and a capacitive-type sensor. The contact probe which is installed on the z-axis is In touch with the aspheric objects which is fixed on the spindle of the diamond turning machine(DTM) during the measuring procedure. The x, z-axis motions of the machine are monitored by a set of two orthogonal plane mirror type laser interferometers. As a results, the developed contact probe on-machine measurement system showed 10 nanometers repeatability with a ${\pm}2{\sigma}$ and uncertainty of 200 nmPv.

  • PDF

A Basic Research for the Development of Generalized Shape Guided Automatic Deburring Machine (형상안내형 범용형상자동면취기의 개발을 위한 기초연구)

  • Kim, Sang-Myng;Jung, Yoon-Gyo;Cho, Sung-Leem
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.104-109
    • /
    • 2012
  • Recently, the deburring process which is last process of manufacture is one of the important process for complete product. The manual deburring process can cause not only higher error rate but also irregular shape and quality of product. Therefore, Shape Guided Automatic Deburring Machine has been developed to resolve the above problems. But the Shape Guided Automatic Deburring Machine have been applied only to produce a circular product. Therefore, this machine is difficult to apply to products of various shapes. To solve this problem, we would like to develop Generalized Shape Guided Automatic Deburring Machine applicable to various shapes. To this end, we have done the modeling and design using CATIA program and have performed machine simulation.

A study on machine simulation application of aircraft parts in 5 axises horizontal machine (항공기 부품의 5축 수평형 공작기계 머신 시뮬레이션 적용에 관한 연구)

  • 이인수;김남경;김해지;장정환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.367-372
    • /
    • 2003
  • This paper shows about the machine simulation embodiment when it happened NC equipment and between workpiece and interference collision at 5 axises processing of aircraft parts. And this research has been chosen because of the highest equipment interference occurrence rate at aircraft parts processing of 5 axises horizontal machine. It can verify simulation and machining process through correlation about their dynamic relations. interference, collision as embodied virtual manufacturing system of machining tool, workpiece, and holder etc. that is necessary element in shape of machine tool and function and processing in imagination ball. Also. it verified about interference and collision between NC equipment parts and workpiece, for applied machine simulation to NC Data of actuality aircraft parts of BULKHEAD and FRAME.

  • PDF

Thermal Behavior Analysis of a CNC Lathe (CNC 선반의 열적 거동 해석)

  • 안경기;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.778-783
    • /
    • 1994
  • In operating automated manufacturing system, the long term stability and reliability of NC machine tools become most critical issues. Especially the machining accuracy is dominated by the thermal deformation of machine tools which remains still unsolved and causes troubles in manufacturing operations. Although researches have been carried out on the thermal behavior of a machine tools to minimize or control the thermal deformation of machine tools, the computer models for an analysis of the thermal behacior in machine tools has yet to appear in the open literature. The object of the paper is to present a method of modeling the thermal behavior of a machine tool. The method will make use of finite elements ad be capable of modeling whole machine structures as well as of heat generation processes in the kinematic system components. And temperature distributions and thermal deformations of a CNC lathe are analyzed using the finite element method and are compared with those measured in practice.

  • PDF

A Study on the Error Compensation of Machine Tool Position Using Reference Artifact and On-machine probe (기준물을 이용한 공작기계 위치오차 보정기술에 관한 연구)

  • 조남규;박재준;정성종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.20-25
    • /
    • 2000
  • In this paper, a methodology of geometrical error identification and compensation for NC machine tool position. We have proposed a reference artifact with which, in measuring the coordinate system of NC machine, the robust coordinate systems are given. The coordinate system of the NC machine could be compensated successfully with the information obtained by measuring the reference artifact and our compensation algorithm. Monte Carlo simulation is used to evaluate coordinate referencing ability and, the uncertainties of the machine tool position is estimated and observed through the compensation process by simulation.

  • PDF

Establishment Method of Optimum Grinding Conditions Considered with Machine Tool Characteristics (공작기계 특성을 고려한 최적연삭조건 설정방법)

  • Kim, Gun-Hoi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.59-65
    • /
    • 1998
  • In order to utilize the information of well-know grinding database or grinding machine characteristics, a database needs to be designed by considering the delicate property of the machine tools for the high precision and quality of the demanding specification. Among the machine tools for the high precision and quality of the demanding specification. Among the machine tools, machining conditions of the grinding are various and knowledge repeatance obtained form the grinding process are less credable. therefore it is desirable for database, which is used to set the grinding conditions, to utilize the maximum machine tool capability. The present paper studied on the occurance limit of chatter vibration and burn considering the characteristics of machine tool. And also basic experiments were performed to establish the optimum grinding conditions which could maximize the grinding efficiency.

  • PDF

Two-Phase Approach for Machine-Part Grouping Using Non-binary Production Data-Based Part-Machine Incidence Matrix (수리계획법의 활용 분야)

  • Won, You-Dong;Won, You-Kyung
    • Korean Management Science Review
    • /
    • v.24 no.1
    • /
    • pp.91-111
    • /
    • 2007
  • In this paper an effective two-phase approach adopting modified p-median mathematical model is proposed for grouping machines and parts in cellular manufacturing(CM). Unlike the conventional methods allowing machines and parts to be improperly assigned to cells and families, the proposed approach seeks to find the proper block diagonal solution where all the machines and parts are properly assigned to their most associated cells and families in term of the actual machine processing and part moves. Phase 1 uses the modified p-median formulation adopting new inter-machine similarity coefficient based on the non-binary production data-based part-machine incidence matrix(PMIM) that reflects both the operation sequences and production volumes for the parts to find machine cells. Phase 2 apollos iterative reassignment procedure to minimize inter-cell part moves and maximize within-cell machine utilization by reassigning improperly assigned machines and parts to their most associated cells and families. Computational experience with the data sets available on literature shows the proposed approach yields good-quality proper block diagonal solution.