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Two-Phase Approach for Machine-Part Grouping
Using Non-binary Production Data-Based
Part-Machine Incidence Matrix

Youkyung Won* - Youdong Won**

B Abstract m

In this paper an effective two-phase approach adopting modified p-median mathematical model is proposed
for grouping machines and parts in cellular manufacturing(CM). Unlike the conventional methods allowing ma-
chines and parts to be improperly assigned to cells and families, the proposed approach seeks to find the prop-
er block diagonal solution where all the machines and parts are properly assigned to their most associated cells
and families in term of the actual machine processing and part moves. Phase 1 uses the modified p-median
formulation adopting new Inter-machine similarity coefficient based on the non-binary production data-based
part-machine incidence matrix(PMIM) that reflects both the operation seauences and production volumes for the
parts to find machine cells. Phase 2 applies iterative reassignment procedure to minimize inter-celt part moves
and maximize within-cell machine utilization by reassigning improperly assigned machines and parts to their most
associated cells and families. Computational experience with the data sets available on literature shows the pro-
posed approach yields good-quality proper block diagonal solution.

Keywords : Cellular Manufacturing System, Machine-part Grouping, P-median Mathematical
Model, Two-phase Approach
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1. Introduction

Over the past three decades, Group technol-
ogy (GT) has emerged as an effective manage-
ment technology for improving the productivity
of job shop manufacturing. GT is a method of
factory reorganization in which organizational
units known as groups of machines complete
all the products or parts they make and are
equipped with all the processing facilities they
need to do so. Cellular manufacturing (CM) is
an application of GT principle to manufacturing.
It has been well known that the adoption of CM
system has led to reduced manufacturing lead
times, reduced in-process inventories, reduced
set-up costs, improved quality control and flex-
ibility in comparison with the traditional job
shop [23, 32].

One of the crucial steps toward designing CM
is to create part families and associated machine
cells or vice versa. Part family is a collection
of parts that have similar operations and require
a similar set of machines for the completion of
these operations. A set of machines grouped to
produce the parts in a specific part family is
called the machine cell. The problem of finding
part families and their associated machine cells
is known as the machine-part grouping (MPG)
problem or cell formation (CF) problem in
literature.

The fundamental objective of MPG is to find
independent machine cells with minimum inter-
action between cells so that a set of part family
having similar or identical processing require—
ments can be completely produced within a cell.
Interaction between cells can be measured with
the amount of part moves required outside a

specific machine cell so as to complete all the

operations of parts. Another main objective of

MPG is to accomplish maximum utilization of

machines within cells. This paper seeks to find
the best configuration of machine cells and part
families where inter—cell part moves are mini-
mized and within—cell machine utilization is max-
imized.

The main input to MPG problem is typically
the binary part-machine incidence matrix (PMIM)
where each row corresponds to a part and each
column to a machine. The elements of binary
PMIM can be obtained from the routing in-
formation of parts. An nxm binary PMIM A
(=la;)) with n part types and m machine types
consists of the zero-one element q; where the
element q; is 1 or 0 depending on whether or
not part ¢ requires processing on machine j.

Block diagonalization has been considered as
the best approach to form machine cells and
part families. In an ideal solution, all the 1's will
remain in the diagonal blocks of the matrix and
all the zeros in the off-diagonal blocks and
these blocks facilitate the grouping of machines
and parts into independent cells and families.
However, MPG algorithms often fail to find the
best block diagonal solution since the algo-
rithms yield the non-optimal block diagonal
solutions in which there exist the 1's outside the
diagonal (known as exceptional elements) and
zeros in the diagonal blocks (known as voids).
A 1 lying outside the diagonal blocks indicates
processing of a part outside its cell, requiring
inter-cell movement of part and a zero in the
diagonal blocks indicates the corresponding
machine is idle. One of the popular objectives
of binary PMIM-based MPG is to minimize the
total number of exceptional elements in the
off-diagonal blocks.
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A number of research papers have been pub-
lished in the field, seeking block-diagonalization
of the binary PMIM. To block-diagonalize the
binary PMIM, several approaches and algo-
rithms have been proposed. However, the con—
ventional binary PMIM-based MPG methods
do not address the following practical issues
[15, 29]:

¢ sequence of manufacturing operations,

® non-consecutive operations on the same
machine,

¢ volume of inter-cell moves, and

e machine capacity.

Among these factors, sequence of manu-
facturing operations and volume of inter—cell
moves due to the difference in demand of the
parts to be manufactured have significant im-
pact on the efficiency of CM system. Since the
MPG without considering the operation se-
quences and production volumes of parts tends
to distort the real extent of material handling
efforts within and outside the cells, the goal of
minimizing binary exceptional elements without
considering the operation sequences and pro-
duction volumes of parts does not necessarily
constitute minimization of real material han-
dling [26]. Modeling these factors into MPG at
the design stage of CM leads to more realistic
solution.

The MPG reflecting the real manufacturing
factors above has considerable attention in the
recent CM literature. Sarker and Xu [18] and
Park and Suresh {17] have provided broad re-
views of sequence-based MPG methods. Most
of MPG methods use similarity (dissimilarity)

coefficient defined between pairs of parts or

machines to group parts or machines. A broad
review of MPG methods adopting the similarity
(dissimilarity) coefficients can be found in Yin
and Yasuda [41). To solve the MPG problem
considering the operation sequences and pro—
duction volumes, a variety of similarity co-
efficients have been proposed [5, 8, 9, 14, 15, 18,
21, 22, 26, 27, 28]. Park and Suresh [17] ad-
dressed some drawbacks using theses similarity
coefficients.

The MPG using non-binary PMIM has much
attention in the recent CM literature. Harhalakis
et al.[6] addressed the importance of capturing
shop floor realities in MPG since the methods
based on the binary PMIM do not reflect the
real manufacturing factors. Instead of the clas—
sical binary PMIM, they used the non-binary
PMIM of ordinal data considering the operation
sequences of parts as the input and proposed
a two-stage procedure to minimize the total
amount of inter—cell part moves. But since each
element of their non-binary PMIM does not
represent the actual flows incurred by parts, it
cannot be used directly to group machines into
cells and parts into families by rearranging the
rows and columns of the matrix. Nair and
Narendran [15] used Harhalakis et al.'s PMIM
[6] considering operation sequences to group
machines and parts and proposed a non-
hierarchical clustering algorithm based on the
weighted inter-machine similarity coefficient
considering operation sequences and produc-
tion volumes of parts. But their algorithm did
not use the sequence-based PMIM directly. Wu
[39], Yu and Sarker [42, 43], and Xambre and
Vilarinho [40] used the inter-machine or in-
ter—cell flow matrix to seek to find the machine

cells minimizing the inter—cell flows. Suresh et
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al. [26]) and Park and Suresh [17] used bina-
ry-valued precedence matrices of two parts to
assess the level of similarity in machine re-
quirements and sequences.

Among the methodologies for solving the
MPG problem, mathematical programming ap-
proach that attempts to find machine cells and
part families by formulating the problem as a
linear or nonlinear programming model offers
the distinct advantage of being able to in-
corporate real-world manufacturing data such as
ordered sequences of operations, alternative
process plans, nonconsecutive part operations
on the same machine, setup and processing
times. Chu [3] has provided extensive review
on the mathematical programming approach for
attacking the MPG problem. Kusiak [10] pre-
sented the p—median model as a solution meth-
odology for solving the MPG problem and many
authors have reported successful applications to
the MPG problem with modifications over
Kusiak’s original p~median model [1, 13, 19, 30,
33, 35). Unlike the different mathematical pro-
gramming approaches based on nonlinear ob-
jective function [4, 7, 14, 24, 40, 42, 43], the
p~median models attempt to optimize linear ob-
jective functions with the linear constraints. But
most of the existing p~median models deal with
the MPG problem based on the binary PMIM.

Recently, Won and Currie [36] have proposed
a modified p—median model adopting a new in-
ter-machine similarity coefficient based on the
type I production data-based PMIM [38] which
incorporates the real manufacturing factors
such as the operation sequences with multiple
visits to the same machine and production vol-
umes of parts. But their p~median model alone

is not sufficient to produce the proper block di-
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agonal solution in which machines and parts are
assigned to their most suitable cells and
families. Recently, Won [34] and Won and
Currie [37] proposed neural network procedures
based on the type I production data-based
PMIM to find the best non-binary block diago-
nal solution. But their part-oriented procedures
do not consider realistic restriction on the cell
size allowable by workers in cells. Furthermore,
their neural network algorithms are still sensi-
tive to the order of part input vector pre-
sentation, by which the performance of neural
network algorithm is severly affected.

In this paper an effective two-phase approach
adopting Won and Currie’s modified p-median
mathematical model [36] is proposed for group-
ing machines and parts in CM. The proposed
approach seeks to find the proper block diagonal
solution where all the machines and parts are
properly assigned to their most associated cells
and families in term of the actual machine proc-
essing and part moves. Phase 1 uses the modi-
fied p-median formulation to find machine cells.
The modified p-median model is not sensitive
to the number of part vectors and/or the order
of part input vector presentation since it adopts
inter-machine similarity coefficient Phase 2
applies iterative reassignment procedure to
minimize inter-cell part moves and maximize
within-cell machine utilization by reassigning
improperly assigned machines and parts to their
most associated cells and families. It will be
shown that such an ancillary procedure im-
proves the solution quality significantly.

The paper is organized as follows. Section 2
describes the constraints for MPG by introduc-
ing the concept of proper block diagonal sol-
ution matrix from the types of bottleneck ma-
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chines and parts based on the non- binary type
I production data-based PMIM. Section 3 de-
scribes the two-phase approach for grouping
machines and parts. In section 4 the proposed
approach is illustrated with example data set
taken from the literature and compared with
existing solution. Section 5 reports the compu-
tational results with various data sets available
in literature. The last section gives the sum-
mary and conclusion of the present study.

2. Constraints for Machine-part
Grouping

MPG decision requires the decision on the
following parameters or restrictions:

e Number of cells required

Most of the MPG methods require an a priori
specification of the number of cells. However, this
contradicts the fundamental philosophy of GT
that cells exist naturally and that the analyst
is to identify them if they exist [15]. At the
stage of design, it is only logical that the num-
ber of cells should be outcome of the solution
procedure and not an input parameter {25] and
this justifies to use modified p-median model
without the predetermined number of cells for

grouping machine cells.

o Cell size

Cell size means the lower and upper bounds
on the number of machines allowable in a cell.
Many authors assert that an a priori specifica-
tion of the cell size also contradicts the above-
mentioned fundamental philosophy of GT. But
the size of a cell needs to be controlled for sev-

eral reasons, such as available space and socio—

logical environment in a cell [28]. In practice,
the number of machines in a cell ranges from
2 to 8 [12].

e Singleton cell or family

The definition of cell and family indicates that
a cell consists of two or more dissimilar ma-
chines and a family contains two or more sim-
ilar parts. Some methodologies often, however,
produce many singleton cells or families which
cause inter—cell moves. Considering the philos-
ophy of GT pursuing group production, how-
ever, these trivial cells or families must be reas-
signed into their most associated cells or fa-
milies. If inter—cell moves can be decreased by
reassigning a machine (part) in a singleton cell
(family) to its most associated nonsingleton cell
(family) within the upper limit of cell size, re-
assigning a machine (part) in a singleton cell
(family) can significantly contribute to mini-
mization of inter-cell flows. MPG algorithm
should be able to produce nonsingleton cells and
families.

o Empty cell or family

The conventional MPG algorithms often pro-
duce empty machine cells or part families. Empty
cells (families) are often found if MPG algo-
rithm seeks to maximize an efficiency measure
of the block diagonal solution [16]. Since empty
cells or part families have no parts to process
or no machines to visit, empty cells and families
should be reassigned to their most associated
cells or families so that actual minimum in-
ter—cell flows and maximum within—cell uti-
lization is accomplished.

Other constraints, such as machine capacity,
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alternative process plans, and so on, can be in—-
cluded in the MPG procedure. From the dis-
cussion of the constraints for MPG, in the pres-
ent study we attempts to find the rigorous block
diagonal solution subject to the following con—
straints which have often been adopted in liter-
ature [11]:

i) The number of machines in a cell cannot ex-
ceed the upper limit, U.

ii) Singleton machine cells or part families are
not allowed.

iii) Empty machine cells or part families are not
allowed.

However, MPG algorithms often unnatural
block diagonal solution due to the improperly
assigned bottleneck machines and parts. Bottle~
neck machines are the ones that have more part
processing in other cells than their current cell
and bottleneck parts are the ones that undergo
more flows in other family than their current
family. Bottleneck machines and parts critically
impact inter-cell flows. If bottleneck machines
or parts can be reassigned to their most asso-
ciated non-singleton cells or families within the
upper limit on cell size, those improperly as-
signed bottleneck machines or parts should be
reassigned. To obtain the block diagonal sol-
ution where all the machines and parts are
properly assigned to their most appropriate cells
and families, bottleneck machines are catego-

rized as follows:

e Type I bottleneck machine
If a machine belonging to a cell has more
part processing in other cells, it is called a
type I bottleneck machine,

e Type II bottleneck machine
If a machine belonging to a cell has equal
or more part processing in other cells, it is
called a type I bottleneck machine.

e Type I bottleneck part
If a part belonging to a family corresponding
to a cell has more flows in other family cor-
responding to that cell, it is called a type I
bottleneck part.

e Type I bhottleneck part
If a part belonging to a family corresponding
to a cell has equal or more flows in other
family corresponding to that cell, it is called
a type II bottleneck part.

Type 1 bottleneck machine (part) clearly in-
creases inter—cell flows. Type O bottleneck ma-
chine (part) does not increases inter—cell flows
but impacts within-cell machine utilization. The
block diagonal solution matrix that does not
have singleton cell (family), empty cells (family)
or bottleneck machines (parts) is called the pro-
per block diagonal solution matrix. From the
fundamental viewpoint of MPG minimizing in-
ter-cell flows and maximizing within—cell ma-
chine utilization, the proper block diagonal sol-
ution matrix is the closest to the natural group
if the number of cells is not too small and the
cell size is not too large. Enhancement proce-
dure proposed in phase 2 uses the bottleneck
machines and parts as one of the conditions for
stopping the iteration.

The concepts of bottleneck machines and
parts, and proper block diagonal solution are il-
lustrated with a production data-based PMIM as
shown in <Figure 1> where five machines proc-
ess six parts. Unlike the conventional binary
PMIM that only represents whether or not each
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part requires processing on machines visited,
each non-binary entry in <Figure 1> repre-
sents the actual flows incurred by parts. In this
system, cell 1 having machines 1,3, and 5 proc—
esses part family 1 having parts 2,3,5, and 6,
and cell 2 having machines 2 and 4 processes
part family 2 having parts 1 and 4. Under the
current configuration of machine cells and part
families, machine 5 in cell 1 is a type I bottle-
neck machine since it has more processing on
parts in family 2. Similarly, part 5 in family 1
is a type I bottleneck part since it has more
flows on machines in cell 2 and part 3 is a type
O bottleneck part since it makes more visits
on machines in cell 2. Hence the solution matrix
in <Figure 1> is an improper block diagonal
solution matrix. For this example, let us assume
that the upper limit on cell size is 4. <Figure
2> shows the solution matrix after the re-
assignment of the bottleneck machines and
parts. It can be noted that the cell configuration
after the reassignment of the bottleneck ma-
chines and parts gives less inter—cell flows of
290 units compared with the inter-cell flows of
510 units corresponding to the cell configuration
before the reassignment of the bottleneck ma-
chines and parts. Within—cell machine utiliz-
ation is also improved since the number of voids
decreases as many as one compared with the
cell configuration before the reassignment of
the bottleneck machines and parts. This exam-
ple shows why bottleneck machines and parts
are reassigned to their most appropriate cells
and families where they have most processing
and flows. The solution matrix shown in
<Figure 1> gives better solution than the one
in shown in <Figure 2> in terms of both in-

ter—cell moves and voids since the former gen-

erates inter—cell moves of 510 units and 4 voids
while the latter generates inter—cell moves of
290 units and 3 voids.

machines
1 3 5 2 4
2 200 100
3 150 100 50
parts 5 90 100 200
6 50 50 0
1 160 160 &0
4 180 80

{Figure 1> Improper block diagonal solution

machines
1 3 2 4 5
2 200 100
6 50 50 50
parts 1 160 80 160
4 180 80
5 150 100 50
3 90 200 100

(Figure 2> Proper block diagonal solution

3. Two-Phase Approach to MPG

3.1 Phase 1: Initial grouping phase

The proposed approach begins with an initial
configuration of machine cells. For an initial
setting of machine cells, a solution where ma-
chines are randomly allocated to the pre-
determined number of cells can be used. But
since the initial solution close to the optimal cell
configuration can lead to better solution within

shorter computation time, it is a good approach
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for cell designer to start such a near-optimal
solution of machine cells. In order to find the
initial solution of machine cells close to the opti-
mal cell configuration, phase 1 adopts the pro-
duction data-based p-median mathematical
model in Won and Currie [36].

Given an nxm type I production data- based
PMIM B(=[b;]), we adopt the similarity co-
efficient between pair of machines j and & de-

fined as

S = 2 [(bu" bik) (1)

where

+2min(b,;b,) ifb;b, >0

Ib;b,) ={—-max(b“-,b,-k) if either b; >0 or b, >0
0 otherwise.

The rational for the new weighted similarity
coefficient is similar to that in Viswanathan [30]
except that the non-binary entries reflecting the
operation sequences and production volumes of
parts are incorporated into the measure. Like
Viswanathan's measure dealing with binary
PMIM, the proposed measure also aims at
block~diagonalizing the initial type I production
data-based PMIM by having less zeros inside
the diagonal blocks that mean high within-cell
utilization of machines, and having less positive
entries outside the diagonal blocks that mean
less inter—cell flows of parts.

The p-median model adopting the similarity
coefficient given in equation (1) is then de-
scribed as follows [36]) :

(PP)

m

MaX E Sjkzjk (2)

I=1k=1

subject to Yz, =1, j=1,,m 3
k=1

M=

Ty = Imkkv k=1,--,m (4)

=1

™=

zy < Uy k=1,m (5)

J=1

il

zp=0or 1, j=1,--,m; k=1,--,m (6)

The objective function (2) maximizes the sum
of similarity coefficients between machine pairs.
Constraint (3) specifies that each machine needs
to be assigned to one and only one cell. Con~
straint (4) ensures that at least L machines
should be assigned to cell k only if that cell &
is generated and constraint (5) guarantees that
at most U machines can be assigned to cell &
only if that cell & is generated. These cell size
constraints are used to avoid generating too
many small cells and too few large cells and
can lead to the solution with balanced workload
per cell. Constraint (12) ensures the binary sol-
ution for machine allocation.

Like in Viswanathan’s formulation, the con-
straint for the predetermined number of cells is
omitted since the objective function seeks to
find the optimal solution of machine allocation
by maximizing the sum of similarities between
machine pairs. Once the initial machine cell is
found with the above p~median model, its cor-
responding part family is formed by assigning
parts to its most appropriate cell with the fol-
lowing rule [34, 36, 371:

Part assignment rule

e Find a cell in which each part has most
flows on machines and assign the part to
that cell.

e If ties occur, assign it to the smallest cell
in which it visits most machines.
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The primary criterion of part assignment rule
seeks to minimize inter—cell part flows and the
secondary criterion seeks to both maximize
within—cell machine utilization and balance the
workload per cell. Thus, the steps of phase 1
are stated as follows:

Phase 1 : Initial grouping

Step 0 : Set the iteration number = 0. Solve the
formulation (PP) to find the initial ma-
chine cells and their associate part
families by assigning parts with the
part assignment rule.

3.2 Phase 2 : Reassignment phase

It has been noticed that the objective function
in the conventional p~median models based on
the binary PMIM is not directly to minimize the
number of exceptional elements which are the
main source of inter—cell part flows {31]. There
is no explicit relationship between the similarity
score and the number of exceptional elements.
Similarly, the initial solution of machine cells
obtained in phase 1 may not be satisfactory
from the viewpoint of minimizing the sum of
inter-cell flows since the objective function in
the proposed p-median model does not seeks to
directly minimize the sum of actual inter-cell
flows. If an MPG problem has lots of bottleneck
machines and parts, the solution found in phase
1 may be unsatisfactory due to the existence of
singleton cells (families), empty cells (families),
and bottleneck machines (parts)

The objective of phase 2 is to find the proper
block diagonal solution of cells and families
where all machines and parts are assigned

properly to their most associated cells and fam-

ilies so as to both minimize inter—cell part flows
and maximize within—cell machine utilization. It
has been shown that reassigning improperly
assigned machines and parts enhances the sol-
ution quality of binary PMIM-based MPG sig-
nificantly [2, 33]. In phase 2, reassignment pro-
cedure is used to further enhance the initial sol-
ution so that it finds a proper block diagonal
matrix in which each machine cell has a proper
block of part family corresponding to it. The re-
assignment procedure minimizes inter—cell flows
and maximizes within—cell utilization by remov-
ing undesirable assignment of machines and
parts. Since the sum of similarity coefficients
and the total amount of actual inter—cell flows
are highly correlated, the proposed p-median
model tends to yield the solution of machine allo-
cation minimizing inter—cell flows. But the sol-
ution by the p—median model does not tell much
about the proper assignment of machines and
parts. To enhance the solution so that all the
machines and parts are properly assigned, the
proposed reassignment procedure reuses the
cell size restriction.

It is evident that reassigning type I bottle-
neck machines or parts to other cell or family
where it has most processing or flows leads to
minimizing inter—cell flows. In the mean time,
reassigning type II bottleneck machine or part
to other cell or family does not impact minimiz—
ing inter-cell flows. But reassigning type I
bottleneck machines or parts to other cell or
family where it has most visits can lead to
maximizing within—cell utilization as shown in
previous subsection. The concept of proper
block diagonal solution matrix and type I bot-
tleneck machines or parts gives the condition
for stopping the implementation of phase 2.
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Stopping condition 1

o All the cells (families) are non-singleton and
non-empty,

¢ the number of cells which are both non- sin-
gleton and non-empty is equal to the num-
ber of families which are both non- single-
ton and non-empty, and

¢ no type I bottleneck machines (parts) are
found.

Then, the step for checking the stopping con-
dition of phase 2 can be stated as follows :

Phase 2 : Reassignment phase

Step 1 : Check the stopping condition 1. If it is
true, stop. Otherwise, increase the iter-
ation number by 1 and go to step 2.1 of
bottleneck machine reassignment.

Since the primary objective of MPG is to cre-
ate independent cells minimizing inter-cell mo-
ves, type I bottleneck machines and parts
should be reassigned. Type I bottleneck mac-
hines and parts also need to be reassigned since
reassigning them can lead to higher within-cell
utilization. To find the proper block diagonal
solution, the machines (parts) belonging to sin—
gleton cells (family) should be reassigned to
their most appropriate non-singleton cells (fam-
ily). Since the reassignment of type I bottle-
neck machines and parts may create large cells
difficult to control, however, the procedure for
checking if the cell size restriction is violated
is needed. To avoid the generation of singleton
cells (families), bottleneck machine (part) is re-
assigned to its most appropriate non-singleton
cell (family) where it undergoes most flows. If

ties occur, the smallest cell (family) is selected.

From the discussion above, we can define the
improperly assigned bottleneck machines that
need to be reassigned. A machine is called the
improperly assigned bottleneck machine if it be-
longs to one of the following categories :

e type I bottleneck machine,
e type I bottleneck machine, or
¢ machine belonging to singleton cell.

The procedure for reassigning improperly as-
signed bottleneck machines can then be stated

as follows:

Bottleneck machines reassignment proce-

dure

Step 2.1 ¢ Check if a machine is an improperly
assigned bottleneck machine. If it is
true, go to step 2.2. If it is false, re-
peat this step for remaining mac-
hines.

Step 2.2 : Check if the cell size restriction is not
violated by reassigning that improp-
erly assigned bottleneck machine to
its most associated non-singleton cell.
If it 1s true, reassign it and go to step
2.1. If it is false, do not reassign that
bottleneck machine and go to step 2.1.

Similarly, we can define the improperly as-
signed bottleneck parts that need to be rea-
ssigned. A part is called the improperly as-
signed bottleneck part if it belongs to one of the
following categories :

e type I bottleneck parts,
e type II bottleneck parts, or
e parts belonging to singleton families.

Reassigning improperly assigned bottleneck
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parts is implemented in the same way as re-
assigning improperly assigned bottleneck mac-
hines. However, the step for checking if the part
family size limit is violated is not assigned into
this procedure since, unlike the machine cell
size limit prespecified by cell designer, it cannot
be determined in advance before the optimal
configuration of cells and families is found. The
procedure for reassigning improperly assigned
bottleneck parts can be stated as follows :

Bottleneck parts reassignment procedure

Step 3 : Check if a part is an improperly as-
signed bottleneck part. If it is true, re-
assign them to their most associated
non-singleton family and repeat this
step for remaining parts. If it is false,
do not reassign it and repeat this step
for remaining parts.

However, the steps 2 and 3 may be repeated
infinitively if the stopping condition 1 is sat-
isfied but the cells size restriction is violated.
In that case, the configuration of machine cells
and part families remains the same as the one
in previous iteration since the improperly as-
signed bottleneck machines can not be reas-
signed. Hence, another stopping condition is
needed to check if the configuration of block di-
agonal solution does not change compared with

the one in previous iteration.

Stopping condition 2
® The configuration of machine cells and part
families is the same as the one in the pre-

vious iteration.

Then the whole algorithm is stated as follows :

Phase 1: Initial grouping

Step 0 @ Set the iteration number = 0. Solve the
model (PP) to find the initial machine
cells and part families.

Phase 2 : Reassignment phase

Step 1 : Check the stopping condition 1. If it is
true, stop. Otherwise, increase the
iteration number by 1 and go to step 2.

Step 2 @ Use bottleneck machines reassignment
procedure to reassign improperly as-
signed bottleneck machines.

Step 3 : Use bottleneck parts reassignment pro-
cedure to reassign improperly assigned
bottleneck parts.

Step 4 : Check the stopping condition 2. If it is
true, stop. Otherwise, go to step 1.

4. Mllustrative Example and
Comparison

To show the application of the proposed ap-
proach, a data set taken from Vakharia and
Wemmerlév (1990) will be considered. The data
set contains 19 part types and 12 machine types.
Since all the parts have equal production vol-
umes in their data set, it is assumed that the
production volume of each part is the unity. The
upper limit on the cell size is set at 7.

Iteration =0

Step 0 Set the iteration number = 0. Implemen-
ting the p~median model (PP) vields the
following solution with five machine
cells, MG ={1,6,9}, MC, ={2,3,5}, MC, =
{4,8}, MG, = {7,310}, and MC, ={11,12} and
five part families, PF, ={4,11}, PF, =8,
PFR={1,2,3,7, 9,10}, PF, = {5,6,14,17, 18},
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Step 1:

and PF, ={12,13,15,16,19}, <Figure 3>
shows the type I production data-based
solution matrix corresponding to the
configuration of machine cells and part
families obtained at the end of phase 1.
Since machine 1 in cell 1 has more proc-
essing in cell 3, stopping condition 1 is
violated. Set the iteration number at 1
and go to step 2.

Iteration = 1

Step 2:From the solution matrix shown in

<figure 3>, it can be noticed that ma-
chines 1,6 and 9 are type I bottleneck
machines and machines 2,3, and 5 are
the type II bottleneck machines be-
longing to singleton part family 2. Since
the cell size limit is not violated even
if bottleneck machines 1,2, 3,5, and 9
are reassigned to cell 3 and bottleneck
machine 6 is reassigned to cell 4, those
bottleneck machines are reassigned.
<Figure 4> shows the solution matrix
after the reassignment. The reassign-
ment of bottleneck machines results in
the system with three nonempty ma-
chine cells and five part families:
MC =@, MC,=0, MC =1{48,1,23,
5,9}, MG, ={7, 10, 6}, MG, = {11, 12}, and
PF, ={4,11}, PF,={8}, PFR={1,2,37,
9,10}, PF, = {5, 6, 14, 17,18}, and PF, =
{12, 13, 15, 16, 19}. Note that reassign-
ing the bottleneck machines makes cells
1 and 2 empty.

Step 3. Since parts 4,8, and 11 are the improperly

assigned bottleneck parts belonging to
the part families corresponding to empty
machine cells, those parts should be rea-

ssigned. Part 17 is a type II bottleneck
part and also needs to be reassigned.
<Figure 5> shows the solution matrix
after the reassignment of bottleneck parts.

Step 4. Since the stopping condition 2 is vio-

lated, go to step 1.

Step 1. Since machine 7 is a type I bottleneck

machine, the stopping condition 1 is vio-
lated. Set the iteration number at 2 and
go to step 2.1.

Iteration = 2
Step 2. Machine 7 needs to be reassigned. How-

Step 3.
Step 4.

n 8 o®»T

DO O awn — o DN

ever, bottleneck machine 7 is reas-
signed to its most associated cell 1, the
cell size limit is violated. Therefore, do
not reassign bottleneck machine 7.
No bottleneck part is found.

Since the configuration of cells and fami-
lies is not changed, the stopping condition
2 is satisfied and the algorithm stops.

Machines
1 6 9 2 3 5 4 8 7 1011 12
3 3 6 6
3
2 112 1 212 2
2 2 4 4
12 6|9
1 1 2 2 212
2 2 4 4
2 1 1 2|2 2
6 214
2 4 2 4 4
1 1 212 2
6 3|3
2 1 1
3 6 3
2 1 1
1 1
1 2 214 1
2 4 418 2
2

{Figure 3> Solution matrix at step 0 of iteration 0
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To show the comparative efficiency of the
proposed approach, a well-known ill-structured
data set 43 part types and 16 machine types tak-
en from Gupta and Seifoddini [5] will be illu-

Machines
4 8 1 2 3 5 9 7 106 11 12

41 6 3 316
11 3
812 2 2 1 2 1 2
114 4 2 2
2112 6 3 9
312 2 1 2 11 2
714 4 2

p 912 2 1 2 1 2

a 100 6 2 4

r 5 2 4 4 4

t 6 2 112 2 1

s 14 6 3 3
17 2 11
18 6 3 3
12 2 1 1
13 11
15 1 2 2 4 1
16 2 4 4 8 2
19 2

{Figure 4) Solution matrix at step 2 of iteration 1

strated and compared with the existing solution
from the reference algorithm. The proposed pro-
cedures have been coded in PASCAL and im-
plemented on a Pentium I PC with 1 GHz us-
ing an extended version of HYPER LINDO
which can solve the integer linear programming
problem with 1,000 or less binary variables.
Limit on the computation time is taken as the
number of pivot iterations automatically preset
by the HYPER LINDO program given an in-
stance of optimization problem. The lower and
upper limits on the cell size are set at 2 and 6,
respectively.

To compare the goodness of non-binary
block diagonal solution, the weighted grouping
efficiency (WGCI) suggested in Won and Currie
[34, 36, 37] is selected to evaluate the overall
performance in terms of inter—cell part moves.
The WGCI measure is defined as follows :

the sum of exceptional b s
WGCI=1— )

Machines iZ1/21
4 8 1 2 3 5 9 7 10 6 11 12
114 4 2 2
2112 6 3 9 To evaluate the performance in terms of
g i Z 12 ; 2 ) within-cell machine utilization, the number of
9l 2 2 1 2 1 2 voids has been applied together.
100 6 2 4
41 6 3 31 6 . )
o sl2 2 51 9 1 5 {Table 17 Initial grouping result
? 2 5 2 ? ;1 3 411 cell no. | machines parts
t 14 6 3 3 1 1, 15 33
s 18 6 3 3
1 3 2 12,9162 410 18 28 32 37, 38, 40, 42
g 2 1 i 3 3, 14 6,7 17, 34, 35, 36
15 1 2 9 4 1 4 4,5 8 (3,5 8 9, 15, 16, 19, 21, 23, 29, 41
ig 2 4 4 8 g 5 6, 10 1,12, 13, 14, 26, 31, 39, 43
17 2 11 6 7, 13 25
{Figure 5> Solution matrix at step 3 of iteration 1 ! 1, 12 1, 2, 22 24, 27, 30
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<Table 1> shows the initial configuration of
machine cells and part families. Initial grouping
by the p-median model yields seven-cell
solution. However, it can be noticed that phase

ing of just one part. <Figure 6> shows the
proper block diagonal solution matrix at the end
of phase 2 in which all machines and parts are
assigned to their most associated cells and

1 produces two singleton part families consist— families.
Machines
2 9 16 1 3 14 4 5 8 13 15 6 10 7 11 12

21 300 600 300 300 300 300
4 ¥s)
10f 2600 1300 1300
18 339 339
28] 320 640 320
32| 430 1290 &0 830
371 3000 4500 3000 1500 3000 3000
3B 70 2250 1500 1500
40| 2600 2600 2600
421 2300 1150 1150 110 1150
6 1200 1200
7 3000 3000 3000
17 1800 1800 1800
A 275 215
3H 500 500
36 600
3 1000 1000 1000
5 1000 1000 1000
8 1500 790 750
9 10000 10000 10000 10000
15 14000 14000

Parts 16 39
19 30 780 780 390 1560
21 ] 810 810 810 810
PAS 5 10 5 10
29 1500 1500
41 1239 2478 1239
14 1500 3000 4500
3 1000 1000 1000
43 1239 2478 2478 3717
12 1150 1150| 1150
1 100 100 100 100
13 2478} 1239 1239
26 750
31 310 310
39 5000 5000
pis) 390 390
11 1239 1239
20 304 304
22 1200 1200
24 70 70 70 70
27 39 39 78
30 11300 11300

{Figure 6y Solution matrix at the end of phase 2
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Gupta and Seifoddini’s ill-structured data set

Machines
1 2 9 16 3 6 10 14 15 4 5 g 1 7 12 13
300 600 300 300 300 300
05
2600 1300 1300
339 339
320 640 320
430 1290 80 860
1500 3000 4500 3000 3000 3000
750 2250 1500 1500
2600 2600 2600
1150 2300 1150 1150 1150
1200 1200
3000 3000 3000
2478 1239 1239
4500 1500 3000
1800 1800 1800
1560 30| 30 780 780
70
310 310
215 215
500 500
600
5000 5000
3717 2478 1239 2478
100 100 100 100
1000 1000 1000
1000{ 1000 1000
70 1500 730
10000 10000 10000 10000
1239 1239
1150 1150 1150
14000 14000
39
34 304
810| 810 810 810
10 5 10 5
70 70 70 70
1 . 78
1500 1500
11300 11300
1000 1000 1000
1239 1239 2478
390 390
1200 1200

{Figure 7> Solution matrix by Gupta and Seifoddini's algorithm

is addressed as the benchmark test material for



comparative purpose in our computational ex-
periment. <Figure 7> shows the type I produc—
tion data-based solution matrix based on the
methods by Gupta and Seifoddini. The solution
by Gupta and Seifoddini’s algorithm yields five
machine cells and five part families, and the
WGCI of 77.86%. The solution by the proposed
approach produces the same number of cells
and families as the solution by Gupta and Se-
ifoddini’s algorithm with higher value of WGCI
of 80.48%. Within—cell machine utilization in
terms of the number of voids is also higher
since Gupta and Seifoddini’s algorithm yields 94
voids, whereas the proposed approach yields 70
voids. The solution matrix by Gupta and Seifod-
dini's algorithm generates one singleton ma-
chine cell and two singleton part families, i.e.,
PF,={1}, PF,=1{25}, and PF; ={22}. Since ma-
chines 7 belonging to singleton cell 4 has more
processing for the parts belonging to family 2,
and machines 12 and 13 belonging to cell 5 cor-
responding to singleton part family 5 has more
processing for the parts belonging to family 3,
those improperly assigned machines should be
reassigned to reduce inter-cell flows and this
implies that the number of cells needs to be
decreased. Parts belonging to singleton families
also should be reassigned. It is interesting to
note that machine 13 belonging to cell 5 is not
even assigned any operations of parts to proc—
ess in that cell. Furthermore, the portion of op—
erations on parts belonging to singleton families
is very small. On the contrary, our approach
produces the proper block diagonal solution
with higher WGCI and fewer voids under the
same number of cells as Gupta and Seifoddini’s
algorithm. This justifies reassigning improperly
assigned bottleneck machines and parts to their

most associated cells and families.

5. Computational Experiment

The Apurpose of computational experiment
with the proposed approach is to report the effi-
ciency of the proposed two-phase procedure on
various problem sets with different data str-
ucture. The solutions found with the proposed
two-phase procedure can be used as a bench-
mark for future comparative study since the
proper block diagonal solutions to those data
sets have never been reported in terms of WGCI
measure.

<Table 2> reports the computational result
with fourteen test data sets taken from literature,
The lower limit on the cell size is set at 2 in
all problems so as to avoid the formation of sin-
gleton cells and the upper limit on the cell size
can be seen in column 3. Column 4 reports the
number of iterations implemented until the sto-
pping conditions of phase 2 are satisfied and
column 5 shows the number of cells (families)
found after the algorithm is terminated. The
rightmost column reports the value of WGCI in
percentage. It can be noticed from the table that
it did not take many iterations to stop the algo-
rithm since the largest number of iterations re-
quired to terminate the steps of phase 2 is 3.
In problems &, 9, 13 and 14 the proposed p-me-
dian model (PP) find the best proper block diag-
onal solution since no further iterations of phase
2 are required.

The average value of the WGCI measure ap-
plied to 14 data sets ranging from well-s truc-
tured data set to ill-structured data set is
8454%. Lee and Garcia-Diaz [13] have reported
the performance of their network-flow based
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(Table 2> Computational result with the data sets taken from literature

Source Size u | Mo of phase 21 Mo of | yyieciog)

1. Selvam and Balasubramanian [22) 5x10 5 2 2 100,00
2. Gupta and Seifoddini [5] 43x16 6 3 5 80.48
3. Harhalakis et al. [6] 2020 5 3 5 84.75
4. Vakharia and Wemmerlév [28] 19x12 7 2 3 7321
5. Seifoddini and Djassemi [21] 4130 10 3 7 92.50
6. Seifoddini and Djassemi [21] 41x30 10 3 7 8192
7. Lee and Garcia-Diaz [13) 16x12 5 3 3 72.12
8. Nair and Narendran [15] 77 3 0 3 76.92
9. Nair and Narendran [15] 208 4 0 3 80.49
10. Nair and Narendran {15] 12x10 5 2 4 80.70
11. Nair and Narendran [15] 40%x25 10 3 8 77.66
12. Wu {39] 6x8 5 2 2 9%.38
13. Wu [39] 13x13 5 0 4 90.81
14. Won and Lee [38] 5%5 3 0 2 89.62

average 84.54

procedure applied to real industry data. Since
they did not use the performance measure based
on the type I production data-based PMIMV,
the fair comparison with the proposed algorithm
is impossible. But the cell efficiency they used
as the performance measure to evaluate the
quality of the solutions obtained considers the
ratio of the total number of part moves within
cells to the total number of part moves in the
whole system. In this regard the cell efficiency
is very close to the WGCI. Their method pro-
duced the cells and families with the cell effi-
ciency ranging from 72.3% to 82.8%. Consider—-
ing the average WGCI by the proposed ap-
proach applied to a variety of well-structured
or ill-structured data sets, it produces good-
quality proper block diagonal solutions.

6. Summary and Concluding
Remarks

In this paper a two-phase approach adopting

the modified p—median model is developed to
group machines and parts in CM. To find the
machine cells and part families maximizing or
minimizing efficiency measure of the block di-
agonal solution, most of the conventional algo—
rithms admit generating the machine cells and
families where machines and parts are improp—
erly assigned. This often leads to the improper
block diagonal solution where
¢ machine belonging to a cell has more proc—
essing for the parts corresponding to other
cell,
* part belonging to a family has more flows
in other family,
¢ many singleton machine cells (part families)
consisting of a machine (part) are found, or
¢ empty cells are found since the machines in
those cells are not assigned any processing
of parts.

Considering the fundamental philosophy of
GT that seeks to exploit the similarities be-
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tween machine pairs or part pairs, the improper
block diagonal solution implies that the result-
ing CM system does not fully utilize the sim-
ilarities between machine pairs or part pairs.
Unlike the conventional MPG algorithms allow-
ing the machines and parts to be improperly as-
signed, our two-phase approach seeks to find
the configuration of machine cells and part fam-
ilies where all the machines and parts are prop-
erly assigned to their most associated cells and
families within the limit on the cell size.

To find the initial solution of machine cells
and part families, phase 1 adopts the modified
p-median formulation which uses a new sim-
ilarity coefficient based on non-binary pro-
duction data-based PMIM that captures shop
flow reality as follows:
® operation sequences of parts,

e non-consecutive multiple visits to the same
machines, and

¢ production volumes.

The modified formulation does not require the
number of cells to be predetermined in phase
1. To minimize inter-cell part moves and max-
imize within-cell machine utilization, phase 2
uses the solution from phase 1 to find the proper
block diagonal solution by reassigning improp-
erly assigned machines and parts to their most
associated cells and families. Such an ancillary
enhancement procedure leads to significant im-
provement of the initial block diagonal solution
by removing the above-mentioned improper
assignment of machines and parts.

Computational results applied intermediate—
size data sets available in literature show that
the proposed approach finds good-quality prop-
er block diagonal solutions within short iter-

ation of algorithm. The proposed algorithm can
also be extended to more complicated MPG
problem so that it can incorporate the manu-
facturing factors, such as alternative process
plans, replicate machines, and machine capacity.
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