• Title/Summary/Keyword: Manufacturing facility

Search Result 352, Processing Time 0.022 seconds

Study on 3D Image Scan-based MEP Facility Management Technology (3차원 이미지 스캔 기반 MEP 시설물 관리 기술 연구)

  • Kang, Tae Wook
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.18-26
    • /
    • 2016
  • Recently, for the purpose of maintenance of facilities and energy, there have been growing cases of the 3D image scan-based reverse design technology mostly in the manufacturing field. In the MEP field, because of differences between design and physical model, the reverse technology has been utilized in factory facilities such as a semiconductor factory. Because 3D point clouds from scanning include accurate 3D object information, the efficiency of management works related to the complex MEP facilities can be enhanced. In this study, the reverse technology was surveyed, and the MEP facility management based on 3D image scanning was analyzed. Based on the results, a method of 3D image scan-based MEP facility management was proposed.

A Study on Determining Single-Center Scheduling for LTV(LifeTime Value) Using Heuristic Method (휴리스틱 방법을 활용한 고객 생애 가치에 대한 단일 업체 일정계획 수립에 관한 연구)

  • 양광모;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.1
    • /
    • pp.83-92
    • /
    • 2003
  • Scheduling plays an important role in shop floor planning. A scheduling shows the planned time when processing of a specific job will start on each machine that the job requires. It also indicates when the job will be completed on every process. Thus, it is a timetable for both jobs and machines. There is only one server available and arriving work require services from this server. Job are processed by the machine one at a time. The most common objective is to sequence jobs on the severs so as to minimize the penalty for being late, commonly called tardiness penalty. Based on other objectives, many criteria may serve as s basis for developing job schedules. The process also comprises all strategic planning, capital investments, management decisions, and tasks necessary to create a new product. manufacturing processes must be created so that the product can be produced in the product facility. Purchasing new equipment and training workers may be required if new technology is to be used. Tools, fixtures, and the sequence of steps in the manufacturing processes must all be developed to allow rapid, high-quality, cost effective production. Also, it may be needed to be rearrange the production facility to adapt to the new manufacturing processes. Therefore, this study tries to proposed that Scheduling by customer needs group for minimizing the problem and reducing inventory, product development time, cycle time, and order lead time.

A Study on the Decision-making of Minimax Facility Location (Minimax에 의한 설비입지의 의사결정에 관한 연구)

  • 전만술;이성옥
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.8 no.12
    • /
    • pp.1-6
    • /
    • 1985
  • The purpose of this study is to consider the criteria for decision-making of facility location in view of Minimax. As an illustration of the location of storerooms in a manufacturing plant that minimizes the maximum distance workers must travel to reach a storeroom, the number and variety of location problems that can be formulated appropriately as minimax problems are sizable. A minimax solution can be interpreted as a grease the squeaky wheel solution In solving a minimax location problem, costs other than the maximum cost are not considered.

  • PDF

Biomonitoring of Metal Exposure During Additive Manufacturing (3D Printing)

  • Ljunggren, Stefan A.;Karlsson, Helen;Stahlbom, Bengt;Krapi, Blerim;Fornander, Louise;Karlsson, Lovisa E.;Bergstrom, Bernt;Nordenberg, Eva;Ervik, Torunn K.;Graff, Pal
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.518-526
    • /
    • 2019
  • Background: Additive manufacturing (AM) is a rapidly expanding new technology involving challenges to occupational health. Here, metal exposure in an AM facility with large-scale metallic component production was investigated during two consecutive years with preventive actions in between. Methods: Gravimetric analyzes measured airborne particle concentrations, and filters were analyzed for metal content. In addition, concentrations of airborne particles <300 nm were investigated. Particles from recycled powder were characterized. Biomonitoring of urine and dermal contamination among AM operators, office personnel, and welders was performed. Results: Total and inhalable dust levels were almost all below occupational exposure limits, but inductively coupled plasma mass spectrometry showed that AM operators had a significant increase in cobalt exposure compared with welders. Airborne particle concentrations (<300 nm) showed transient peaks in the AM facility but were lower than those of the welding facility. Particle characterization of recycled powder showed fragmentation and condensates enriched in volatile metals. Biomonitoring showed a nonsignificant increase in the level of metals in urine in AM operators. Dermal cobalt and a trend for increasing urine metals during Workweek Year 1, but not in Year 2, indicated reduced exposure after preventive actions. Conclusion: Gravimetric analyses showed low total and inhalable dust exposure in AM operators. However, transient emission of smaller particles constitutes exposure risks. Preventive actions implemented by the company reduced the workers' metal exposure despite unchanged emissions of particles, indicating a need for careful design and regulation of the AM environments. It also emphasizes the need for relevant exposure markers and biomonitoring of health risks.

Types of Hazardous Factors and Time-trend of Exposure Levels from the Working Environment at a Shock Absorber Manufacturing Facility (자동차 쇼크업소바 제조사업장의 작업자 노출 유해인자의 종류 및 노출수준의 경시적 변화)

  • Na, Gyu-Chae;Moon, Chan-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.4
    • /
    • pp.393-405
    • /
    • 2018
  • Objective: This study examines the types of hazardous factors in the working environment and the time-trend for their exposure levels over 10 years (2007 to 2016). Study Design and Method: The types of hazardous factors and exposure levels were drawn from the 19 measurement reports on the working environment over 10 years at a shock absorber manufacturing facility. Risk assessment of the types of factors and time-trend of exposure levels were evaluated using the factors and exposure levels. Results: A total of 34 hazardous factors were evaluated. The types were noise, 15 organic compounds, seven kinds of acid sand alkalis, eight kinds of heavy metals, and three other compounds. Special management materials used were nickel, hexavalent chrome, and sulfuric acid. Human carcinogens (1A) used were trichloroethylene, nickel, and sulfuric acid. There were six types of substances belonging to the IARC's 2B (body carcinogens) classification or higher, including, methyl isobutyl ketone, ethyl benzene, and trichloroethylene. No detection was found for 627 out of the 2065 total measurements in 19 exposure survey reports, representing 30.4%. Organic solvents, acid and alkali products, and heavy metals showed continuous low exposure concentrations. Noise, welding fumes, and the evaluation of mixed solvents show a gradual decrease in geometric mean and maximum over the time-trend of 10 years. Conclusions: In the case of a shock absorber manufacturing facility, the hazardous factors of noise and the evaluation of mixed solvents still indicate high concentrations exceeding the exposure limits and necessitate reduction studies. These two factors and welding fumes showed a continuous decrease in their ten-year tendency. Organic compounds, acids/alkalis, and heavy metals were managed smoothly in a work environment of continuous low concentrations.

Good manufacturing practice of radiopharmaceuticals in Korea

  • Oh, Seung Jun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.98-103
    • /
    • 2015
  • Good manufacturing Practice (GMP) regulation for diagnostic and therapeutic radiopharmaceuticals was prepared at 2014. The mandatory GMP regulation becomes effective on $1^{st}$, July 2015,with two years of grace periods. Korean radiopharmaceuticals GMP regulation was consisted of quality management, personnel, premise and facility, documentation, production, quality control and self-audit and they have a very similar structure to European Union and PIC/S GMP regulation. Here, we describe detailed description of GMP regulation each part and application to radiopharmaceuticals production. And we also compare Korea, Japan and USA radiopharmaceuticals GMP regulation. GMP is a method to maintain quality of radiopharmaceuticals in daily production and it must be embedded on the manufacturing operation and management.

Manufacturing Therapeutic Exosomes: from Bench to Industry

  • Ahn, So-Hee;Ryu, Seung-Wook;Choi, Hojun;You, Sangmin;Park, Jun;Choi, Chulhee
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.284-290
    • /
    • 2022
  • Exosome, a type of nanoparticles also known as small extracellular vesicles are gaining attention as novel therapeutics for various diseases because of their ability to deliver genetic or bioactive molecules to recipient cells. Although many pharmaceutical companies are gradually developing exosome therapeutics, numerous hurdles remain regarding manufacture of clinical-grade exosomes for therapeutic use. In this mini-review, we will discuss the manufacturing challenges of therapeutic exosomes, including cell line development, upstream cell culture, and downstream purification process. In addition, developing proper formulations for exosome storage and, establishing good manufacturing practice facility for producing therapeutic exosomes remains as challenges for developing clinical-grade exosomes. However, owing to the lack of consensus regarding the guidelines for manufacturing therapeutic exosomes, close communication between regulators and companies is required for the successful development of exosome therapeutics. This review shares the challenges and perspectives regarding the manufacture and quality control of clinical grade exosomes.

Development of Cloud based Data Collection and Analysis for Manufacturing (클라우드 기반의 생산설비 데이터 수집 및 분석 시스템 개발)

  • Young-Dong Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.216-221
    • /
    • 2022
  • The 4th industrial revolution is accelerating the transition to digital innovation in various aspects of our daily lives, and efforts for manufacturing innovation are continuing in the manufacturing industry, such as smart factories. The 4th industrial revolution technology in manufacturing can be used based on AI, big data, IoT, cloud, and robots. Through this, it is required to develop a technology to establish a production facility data collection and analysis system that has evolved from the existing automation and to find the cause of defects and minimize the defect rate. In this paper, we implemented a system that collects power, environment, and status data from production facility sites through IoT devices, quantifies them in real-time in a cloud computing environment, and displays them in the form of MQTT-based real-time infographics using widgets. The real-time sensor data transmitted from the IoT device is stored to the cloud server through a Rest API method. In addition, the administrator could remotely monitor the data on the dashboard and analyze it hourly and daily.

Study on Safety Management Plan through Chemical Accident Investigation in PCB Manufacturing Facility Etching Process (PCB 제조시설 에칭공정 화학사고 조사를 통한 안전관리 방안 연구)

  • Park, Choon-Hwa;Kim, Hyun-Sub;Jeon, Byeong-Han;Kim, Duk-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.132-137
    • /
    • 2018
  • Although the number of chemical accidents has been declining since the Chemical Control Act of 2015, there have been repeated occurrences of similar types of accidents at printed circuit board (PCB) manufacturing facilities. These accidents were caused by the overflow of hydrochloric acid and hydrogen peroxide, which are toxic chemicals used in the printed circuit board manufacturing process. An analysis of the $Cl^-$ content to identify the cause of the accident showed that in the mixed route of hydrochloric acid and hydrogen peroxide, which are accidental substances, the $Cl^-$ concentration was 66.85 ppm in the hydrogen peroxide sample. Through reaction experiments, it was confirmed that the deformation of a PVC storage tank and generation of chlorine gas, which is a toxic gas, occurred due to reaction heat occurring up to $50.5^{\circ}C$. This paper proposes a facility safety management plan, including overcharge, overflow prevention, leak detection device, and separation tank design for mixing prevention in printed circuit board manufacturing facility etch process. To prevent the recurrence of accidents of the same type, the necessity of a periodic facility safety inspection and strengthening of the safety education of workers was discussed.