• 제목/요약/키워드: Manufacturing Information System

검색결과 1,628건 처리시간 0.029초

다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구 (The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms)

  • 김정훈;김민용;권오병
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.23-45
    • /
    • 2020
  • 기업의 경쟁력 확보를 위해 판별 알고리즘을 활용한 의사결정 역량제고가 필요하다. 하지만 대부분 특정 문제영역에는 적합한 판별 알고리즘이 어떤 것인지에 대한 지식은 많지 않아 대부분 시행착오 형식으로 최적 알고리즘을 탐색한다. 즉, 데이터셋의 특성에 따라 어떠한 분류알고리즘을 채택하는 것이 적합한지를 판단하는 것은 전문성과 노력이 소요되는 과업이었다. 이는 메타특징(Meta-Feature)으로 불리는 데이터셋의 특성과 판별 알고리즘 성능과의 연관성에 대한 연구가 아직 충분히 이루어지지 않았기 때문이며, 더구나 다중 클래스(Multi-Class)의 특성을 반영하는 메타특징에 대한 연구 또한 거의 이루어진 바 없다. 이에 본 연구의 목적은 다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 유의한 영향을 미치는지에 대한 실증 분석을 하는 것이다. 이를 위해 본 연구에서는 다중 클래스 데이터셋의 메타특징을 데이터셋의 구조와 데이터셋의 복잡도라는 두 요인으로 분류하고, 그 안에서 총 7가지 대표 메타특징을 선택하였다. 또한, 본 연구에서는 기존 연구에서 사용하던 IR(Imbalanced Ratio) 대신 시장집중도 측정 지표인 허핀달-허쉬만 지수(Herfindahl-Hirschman Index, HHI)를 메타특징에 포함하였으며, 역ReLU 실루엣 점수(Reverse ReLU Silhouette Score)도 새롭게 제안하였다. UCI Machine Learning Repository에서 제공하는 복수의 벤치마크 데이터셋으로 다양한 변환 데이터셋을 생성한 후에 대표적인 여러 판별 알고리즘에 적용하여 성능 비교 및 가설 검증을 수행하였다. 그 결과 대부분의 메타특징과 판별 성능 사이의 유의한 관련성이 확인되었으며, 일부 예외적인 부분에 대한 고찰을 하였다. 본 연구의 실험 결과는 향후 메타특징에 따른 분류알고리즘 추천 시스템에 활용할 것이다.

중국 경제성장의 제약요인이 한국 통상환경에 미치는 영향 (The Influence of the Restrictions in Chinese economic growth on Korean commercial environment)

  • 송일호;이계영
    • 통상정보연구
    • /
    • 제15권4호
    • /
    • pp.457-479
    • /
    • 2013
  • 중국의 경제적 부상(rise)으로 부민강국이라는 중국의 꿈이 구체화하고 있다. 중국경제의 고도성장은 전 세계에 커다란 충격을 줄 것이다. 세계의 공장과 세계의 시장으로 영향력을 확대하고 있다. 그러나 중국의 지속적 경제성장 실현에는 여러 제약요인이 존재한다. 급격한 성장의 부작용으로 중국사회는 관료의 부패, 부의 양극화등 많은 사회적 난제를 가지고 있다. 국제적으로는 중국 위협론과 주변국과의 영토분쟁이 있다. 최근 중화민족주의의 출현에 대한 주변국의 견제도 심각한 제약요인이 되고 있다. 중국 내부적으로는 관료사회의 부패만연, 공산당 통치능력 약화, 차별적 경제발전전략에 따른 부의 양극화, 농촌문제의 심각성, 사회적 불안정, 사회보장 체제 미비, 동부 연해지역과 서부 내륙지역의 발전격차, 소수민족 문제, 환경오염과 에너지자원 부족으로 인한 지속가능한 성장의 제약등 여러문제로 구소련같이 국가가 해체될 가능성도 상존한다. 사회 양극화의 심화는 사회주의 혁명당시 지지기반인 농민과 노동자들을 공산당에 실망하게 하여 공산당 일당집권의 명분을 위협할 가능성이 있다. 에너지 자원 부족, 환경오염등 문제는 한국기업과 경제에 위기를 가져다줄 것이다. 특히 한국경제에 미칠 중요한 영향은 경제 성장방식의 전환이다. 투자와 소비의 균형, GDP중심성장에서 탈피하여 소비, 환경중심으로 전환된다. 금융, 환경, 문화, 교육, 의료, 사회복지관련 산업등 서비스 산업이 성장할 것이다. 중국의 성장모델 변화는 한국의 중간재 산업에 큰 시련을 안겨 줄 것 이다. 중국은 성장을 소비중심으로 맞추면서 구조조정을 시작했다. 기계, 자동차, 반도체, 철강, 화학 중심인 대중국 수출산업 비중을 줄이고 서비스산업 비중을 늘려야 한다.

  • PDF

주문생산 기업을 위한 기계학습 기반 총생산시간 예측 기법 (A Machine Learning-based Total Production Time Prediction Method for Customized-Manufacturing Companies)

  • 박도명;최형림;박병권
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.177-190
    • /
    • 2021
  • 4차 산업혁명 기술의 발전으로 사람이 처리하지 못하는 부분을 기계학습 등 인공지능 기법을 활용하여 개선해 보려는 노력이 확대되고 있다. 주문형 생산 기업에서도 주문에 대한 총생산시간을 예측하여 납기 지연 등의 기업 리스크를 줄이고자 하나 주문마다 총생산시간이 모두 달라 이를 예측하는데, 어려움을 겪고 있다. 주문 처리량 증대, 주문 총비용 절감을 위해 효율성이 가장 낮은 영역을 찾아 그 영역을 강화하는 TOC(Theory of constraints) 이론이 개발되었으나 총생산시간 예측은 제시하지 못하였다. 주문생산은 고객의 다양한 요구로 인해 주문마다 그 특성이 모두 다르므로 개별적인 주문의 총생산시간을 사후에 측정할 수는 있으나 사전 예측을 하기는 어렵다. 기존 주문의 이미 측정된 총생산시간도 모두 달라 표준 시간으로 활용할 수 없는 한계성이 있다. 이에 따라 경험이 많은 관리자는 시스템의 이용보다는 감에 의존하고 있고, 경험이 부족한 관리자는 간단한 관리지표(예, 원재료가 파이프이면 총생산시간 60일, 철판이면 총생산시간 90일 등)를 사용하고 있다. 불완전한 감이나 지표를 기초로 하여 작업 지시를 너무 빨리하면 정체가 발생하여 생산성이 저하되고, 너무 늦게 하면 긴급 처리로 인해 생산비용이 증가하거나 납기를 지키지 못하는 경우가 발생한다. 납기를 지키지 못하면 지체상금을 배상해야 하거나 영업, 수금 등의 부문에 악영향을 미친다. 본 연구에서는 이러한 문제를 해결하기 위하여 주문생산시스템을 운영하는 기업의 신규 주문 총생산시간을 추정하는 기계학습 모델을 찾고자 한다. 기계학습에 활용된 자료는 수주, 생산, 공정 실적을 사용한다. 그리고 총생산시간의 추정에 가장 적합한 알고리즘으로 OLS, GLM Gamma, Extra Trees, Random Forest 알고리즘 등을 비교 분석하고 그 결과를 제시하고자 한다.

ICT 기반 지역 공유경제형 사회적 기업 사례 연구 (A Case Study: ICT and the Region-based Sharing Economy of a Start-up Social Enterprise)

  • 노태협
    • 경영정보학연구
    • /
    • 제18권1호
    • /
    • pp.157-175
    • /
    • 2016
  • 시장 경제 자본주의 체제 하에서 부의 불평등, 재분배 기능의 한계, 자본의 흐름에 따른 비효율적 과대생산과 과대소비, 인간 존엄성과 자유의 제한 등의 한계점이 드러나고 있다. 이러한 한계를 조정하기 위하여 새로운 공생의 가치 마련이 요구되고 있으며, 개별 기업 단위에서도 사회적 책임과 공유가치에 대한 요구가 강조되고 있다. 기업의 사적 영리와 사회적 가치를 동시에 추구하고자 하는 사회적 경제 또는 사회적 기업의 형태가 사회공유 가치창출의 대안으로 제시되어, 그 가능성과 영역을 확대하고 있다. 기술적인 면에서 인터넷과 스마트폰을 비롯한 모바일 단말기의 급속한 보급은 대중 참여의 공유경제 확산을 가능하게 만들고 있다. 정보통신 플랫폼과 빅테이터 분석과 같은 초고속 네트워크 통신 및 대용량 데이터 처리 기술의 발달은 개인 대 개인, 기업 대 개인 간의 소통이 실시간으로 가능하게 함으로써 광범위한 수요자와 공급자를 연결해 주어 공유 시장을 확대함에 큰 역할을 하고 있다. 이 논문에서는 지역 협력적 소비를 바탕으로 정보통신기술(Information & Communication Technology)을 활용하여 자전거 관련 공유경제 시스템을 구축, 사회적 기업으로 창업한 (주)푸른바이크쉐어링의 사례를 살펴본다. 푸른바이크쉐어링은 공유, 공생, 공헌의 사회적 책임을 사업 모형 속에 접목하여, 지역 내의 다양한 협력 주체들과의 협업을 통한 사회적 기업을 운영하고 있다. 사례 분석을 통하여, 사회적 기업의 지속가능성을 추구하는 핵심적 요인으로 지역 사회 네트워크 활용이 가능하며, 사회적 기업과 공유경제의 융합 사업 모형을 통해 사회적 기업의 한계를 극복할 수 있는 대안이 될 수 있음을 검토하였다. 또한 정보통신기술의 발달에 따른 기술적 환경 변화가 어떻게 공유경제 시스템에 효과적으로 적용될 수 있는지를 보이고자 하였다. 선행적 이론 정리를 위하여, 사회적 기업의 개념과 현황, 기업의 사회적 책임에 대한 선행 연구의 내용을 살피고, 공유경제의 개념과 특징, 기업의 공유가치 확대에 대한 이론을 정리하였다.

다양한 다분류 SVM을 적용한 기업채권평가 (Corporate Bond Rating Using Various Multiclass Support Vector Machines)

  • 안현철;김경재
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구 (The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure)

  • 김근환;권태훈;전승표
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.1-33
    • /
    • 2019
  • 제조 중소기업들은 지속적인 성장과 생존을 위해 새로운 제품 개발에 필요한 많은 정보가 필요할 뿐만 아니라 자원의 한계를 극복하기 위한 네트워킹(networking)을 추구하지만, 규모의 한계로 인해 한계점에 봉착하게 된다. 초연결성으로 인해 비즈니스 환경의 복잡성과 불확실성이 더욱 높아지는 새로운 시대에 중소기업은 신속한 정보 확보와 네트워킹 문제를 해결이 더욱 절실해지고 있다. 이러한 문제를 해결하기 위해 공공기관인 정부출연(연)구기관(이하 '출연(연)')은 중소기업의 정보 비대칭성 문제를 해결해야하는 중요한 임무와 역할을 맞이하고 있다. 본 연구에서는 비즈니스 인텔리젼스의 경쟁 지능화(competitive intelligence) 기능과 외부 네트워크 활성화를 위한 서비스 인프라(service infrastructure)의 기능을 포함한 공공 정보지원 인프라를 통한 간접지원의 성과를 확산하고자 하는 목적으로 출연(연)이 중소기업의 혁신역량 제고를 위해 제공하는 공공 정보지원 인프라를 활용하는 중소기업의 차별적 특징을 파악하고, 인프라가 기업의 성과에 어떻게 기여하는 가를 규명하고자 하였다. 이를 위해 첫째, 출연(연)이 제공한 정보지원 인프라를 활용하는 제조 중소기업은 다른 중소기업과 어떤 차별적인 특정이 있는가? 라는 연구 질의를 도출하였다. 추가적으로 단순히 선택적 편의 여부를 판단하는 것을 넘어서 출연(연) 정보지원 인프라를 활용한 제조 중소기업의 특징을 복수 집단의 특징과 비교하는 연구를 진행하였다. 둘째, 출연(연)이 제공하는 정보지원 인프라를 활용한 제조 중소기업의 외부 네트워킹 역량이 제품 경쟁력에 어떻게 기여했는가? 라는 연구 질의이다. 본 연구에서 공공 정보지원 인프라에 의해서 강화된 외부 네트워킹 역량이 어떻게 제품 경쟁력에 영향을 미쳤는지 정밀하게 분석하기 위해 복수의 변수에 대한 매개 및 조절 효과 분석을 수행하였다. 연구 모형을 도출하기하기 위해 첫째, 외부 네트워킹이 기술혁신성과에 영향력에 대한 평가를 수행하였다. 일반적으로 기업들은 외부 네트워킹(networking) 전략을 통해 혁신에 필요한 가치 있는 정보를 획득할 수 있기 때문에 기술혁신성과를 높일 수 있다. 정보 획득은 중소 제조기업 경영자의 혁신에 대한 인식을 강화할 뿐만아니라, 의사결정을 효율적으로 하여 경쟁력을 강화시킬 수 있게 된다. 대기업에 비해 인력과 자금의 규모 한계를 극복하기 위해 중소기업은 외부 조직과의 협력관계를 보다 적극적으로 추구한다. 둘째, 기술사업화 역량이 기술혁신성과에 미치는 관계에 대한 평가를 수행하였다. 기술사업화는 생산과 마케팅을 통합하여 새로운 기술을 만드는 역량을 말한다. 우수한 생산 역량을 보유한 기업은 소비자의 수요를 가격, 품질, 신기능 측면에서 신속하게 충족시킬 수 있어 시장내 경쟁우위를 창출하고, 그 결과로 높은 재무적 혁신적 성과를 가져온다고 본다. 혁신적인 기업은 생산 역량과 마케팅 역량에서 일반 기업보다 높은 성과를 나타내는데, 기술혁신성과의 대표 지표로 제품 경쟁력을 지목하고 있다. 마지막으로 기업의 규모가 작을수록 새로운 혁신 정보를 확보할 수 있는 자체 정보지원 인프라가 없는 경향이 있다. 중소기업용 정보인프라는 기업의 제품 또는 서비스 역량을 강화하기 위한 전략에 필요한 중요한 정보를 확보할 수 있어야 하며, 데이터에 대한 해석 기능이 있어야 하고, 기업의 성장과 발전을 위한 다양한 주제(대기업, 공급자, 소비자 등)와의 협력 전략을 수립을 도울 수 있는 기능이 요구된다. 종합하면, 연구모형은 외부 네트워킹 역량(독립변수)이 기술혁신성과인 제품 경쟁력(종속변수)에 영향을 주는 기본 모형에 기술사업화 역량을 매개요인으로 적용하였고, 이들의 관계에 기업의 내부역량(연구원 집중도, 매출액, 업력)이 영향을 줄 수 있기 때문에 기업의 내부역량과 관련된 변수들을 통제하였다. 또한 KISTI가 제공한 공공 정보지원 인프라 활용한 기업별 역량 차이를 분석하기 위해, 정보지원 인프라 활용(효율성)과 관련된 KISTI 외부 기술사업화 전문가(멘토링) 정보지원 횟수의 조절 변수로 고려하였다. 본 연구에서 활용한 데이터 원천은 2차 정보인 '제8차 중소기업 기술통계조사' 자료와 1차 정보인 KISTI의 직접 설문 자료다. '제8차 중소기업 기술통계조사' 는 중소기업청과 중소기업중앙회에서 공동으로 매년 실시되고 있으며, 설문 조사의 모집단은 종사자수 5인 이상 300인 미만인 제조업 및 제조업 외 기업 중에서 기술개발을 수행하고 있는 중소기업 43,204개사이다. 이 중에서 2014년 12월 31일 현재 기준으로 기술개발을 수행하고 있는 3,300개 중소기업을 표본추출하여 방문조사를 실시하여 수집한 자료이다. 본 연구에서 KISTI의 정보지원 인프라를 통해 지원받은 290개의 KISTI 패밀리 기업(ASTI)을 대상으로 2017년에 전자 메일을 통해 자료를 수집하였다. 송부된 290개의 설문지 중 222개의 기업에서 회신을 보내왔으며 그 중에서 설문 내용이 유효한 설문 조사는 149건으로 활용율은 51.3%였다. 분석 결과에 대한 살펴보면 다음과 같다. 규모면에서는 공공 정보지원 인프라 활용 제조 중소기업(ASTI 설문 집단)과 R&D 중소기업(KBIZ 설문 집단)의 성향은 통계적으로 유의미하게 차이가 있었지만, 보다 많은 변수를 종합적으로 보면 크게 다르지 않은 집단이라고 판단했다. 공공 정보지원 인프라를 활용하는 제조 중소기업은 이미 출연(연)과 협업이 가능한 집단을 대표하는 성향 보이는 것으로 나타났다. 외부 네트워킹 역량 강화가 제품 경쟁력 제고에 기여하는데 있어서 기술사업화 역량(마케팅 및 생산 역량)이 가지는 매개 효과의 가능성을 탐색하기 위해서 먼저 통제 변수는 고려하지 않고, Baron과 Kenny(1986)의 매개 효과 분석을 수행했다. 분석결과 외부 네트워크 역량 강화 효과가 제품 경쟁력을 강화시키는 것으로 보였지만, 실제는 기술사업화 역량의 제고를 통해 제품 경쟁력을 강화시키는 것으로 나타났다. 공공 정보지원 인프라 활용의 효과성을 판단하기 위한 멘토링 정보지원 횟수의 조절효과 분석을 위해 3단계의 위계적 회귀분석을 수행하였다. 분석 결과 외부 네트워킹 역량과 멘토링 정보지원 횟수의 상호작용항이 혁신성과(제품 경쟁력)에 유의한 영향을 미쳤을 뿐 아니라, 모델의 설명력도 증가하여, 멘토링 정보지원 횟수의 조절 효과가 검증되었다. 마지막으로 앞서 확인된 복수 매개효과와 조절효과가 동시에 나타날 수 있는 가능성을 판단하기 위해서 매개된 조절효과를 검토했다. 분석결과 외부 네트워킹 역량이 높아지면 제품 경쟁력 제고에 양의 영향을 주지만, 조절 변수인 멘토링 지원 횟수가 높아질수록 그 영향은 오히려 약화되었다. 그리고 외부 네트워킹 역량이 높아지면 사업화 역량(마케팅과 생산)이 높아져서 제품 경쟁력이 높아지며, 조절변수인 멘토링 지원 횟수가 높아지면 독립변수 외부 네트워킹 역량이 매개변수 생산 역량에 미치는 역량이 작아졌다. 종합하면, 외부 네트워킹 역량의 제고는 제품 경쟁력을 높이는데 기여하는데, 직접적 기여하지는 않지만 마케팅과 생산 역량을 높여 간접적으로 기여한다(완전 매개 효과). 또한 이 과정에서 멘토링의 정보적 지원 횟수는 외부 네트워킹 역량 제고가 생산 역량을 제고하는 매개효과에 영향을 준다(순수 조절 효과). 그러나 멘토링 정보 지원 횟수는 마케팅 역량 제고와 제품경쟁력에 별다른 조절 효과를 보이진 않는 것으로 나타났다. 연구를 통한 시사점은 다음과 같다. KISTI의 정보지원 인프라는 서비스 활용 마케팅이 이미 잘 진행되고 있다는 결론을 이끌 수도 있지만, 반면에 시장의 정보 불균형을 해소하는 공공적 기능보다는(열위 기업 지원) 성과가 잘 도출될 수 있는 집단을 지원해서(의도적 선택적 편의) 성과가 잘 나타나도록 관리하고 있다는 결론에 이를 수 있다. 연구 결과를 통해서 우리는 공공 정보지원 인프라가 어떻게 제품경쟁력 제고에 기여하는지 확인했는데, 여기서 우리는 다음과 같은 몇 가지 정책적 시사점을 도출할 수 있다. 첫째, 정보지원 인프라는 분석된 정보뿐만아니라 이 정보를 제공하는 기관(또는 전문가)과 지속적인 교류나 이런 기관을 찾는 역량을 높이는 기능이 있어야 한다. 둘째, 공공 정보지원 (온라인) 인프라의 활용이 효과적이라면 병행적인 오프라인 지원인 정보 멘토링이 지속적으로 제공될 필요는 없으며, 오히려 멘토링과 같은 오프라인 병행 지원은 성과 제고보다는 이상징후 감시에 적절한 장치로 활용되어야 한다. 셋째, 셋째, 공공 정보지원 인프라를 통한 네트워킹 역량 제고와 이를 통한 제품경쟁력 제고 효과는 특정 중소기업에서 나타나기 보다는 대부분 형태의 기업에서 나타나기 때문에, 중소기업이 활용 능력을 제고할 노력이 요구된다.

편의점 유통물류센터의 AGV 도입에 대한 시뮬레이션 분석 (Simulation analysis of AGV introduction in the convenience store logistics distribution centers)

  • 김정훈;김연진;이홍철
    • 한국산학기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.61-69
    • /
    • 2016
  • 2000년 이후 1인가구수의 폭발적인 증가로 국내 편의점 시장 또한 급속히 성장하고 있지만, 아직 국내물류산업의 여건상 수작업 중심으로 이루어져 있어서 시장의 폭발적인 수요증대를 대부분 작업자들에게 의존하고 있다. 이로 인해 전자, 자동차 등 제조업에서 많이 수행되고 있는 자동화를 통한 효율성 증대와 관련된 연구는 미흡한 실정이다. 본 연구에서는 국내 유명 편의점 기업인 A사의 유통물류센터를 대상으로 자동화 설비의 도입을 위한 투자 타당성 분석을 수행하였다. 시간과 인력이 가장 많이 소요되는 피킹 프로세스를 대상으로 시뮬레이션을 이용하여 무인운반차 장비 도입에 따른 생산성 증가 및 비용절감 효과를 분석하였다. 시뮬레이션 결과로 피킹 프로세스에 도입한 AGV 장비는 현재 수작업 대비 시간당 효율성을 증가시키고, 비용을 절감하는 효과도 존재하였다. 아울러, 꾸준히 성장하고 있는 A사 편의점 유통물류센터의 처리물량을 감안하여 적정 AGV 대수를 예측하였다. 물류산업 종사자들의 인건비가 빠르게 증가하는 요즘, 대규모 신규 자동화 센터 구축에 앞서 단위 프로세스 별 부분 자동화를 통한 생산성 증대와 비용감소에 고민하는 투자 의사결정권자들에게 좋은 정보를 줄 수 있을 것으로 기대된다.

진동수주 파력발전장치를 위한 머신러닝 기반 압력 예측모델 설계 및 분석 (A Design and Analysis of Pressure Predictive Model for Oscillating Water Column Wave Energy Converters Based on Machine Learning)

  • 서동우;허태상;김명일;오재원;조수길
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.672-682
    • /
    • 2020
  • 최근 다양한 산업/제조 현장에서 운영 효율화를 위한 디지털 트윈(digital twin) 기술 연구가 활발하게 수행 중이고, 화석 연료의 점진적 고갈과 환경오염 문제는 파력발전소와 같은 신재생/친환경 발전방식을 요구한다. 하지만, 파도의 에너지에 의해서 전기를 생산하는 파력발전에서 변동성이 높은 파도에너지에 의해서 발전량과 고장 등의 운영효율화 요소가 밀접하게 관련되어 있어 이들 사이의 관계를 이해하고 예측하는 것이 매우 중요하다. 따라서 첫 번째로 파고 데이터, 진동수주(OWC: Oscillating Water Column, 이하 OWC) 챔버의 센서 데이터 등과 같은 변동성이 높은 데이터 간에 의미 있는 상관관계 도출이 필요하다. 두 번째로 도출된 상관관계를 기반으로 추출된 데이터로 예측 상황을 학습함으로써 원하는 정보를 예측할 수 있는 방법론 연구가 이루어져야 한다. 본 연구에서는 파력발전 시스템의 디지털 트윈으로 스마트 운용 및 유지보수가 가능하도록 실제 파력발전소의 IoT 센서 데이터를 이용하여 OWC의 압력 예측을 위해 머신러닝 프레임워크를 활용한 워크플로우 기반의 학습모델을 설계하고, 검증 및 평가 데이터셋을 통한 압력 예측분석의 유효성을 확인한다.

게르마늄강화효모의 게르마늄결합 단백질의 분리 및 확인에 관한 연구 (Study on Identification and Purification of Germanium-fortified Yeast)

  • 이성희;이상광;이현주;이용섭;박은우
    • Applied Biological Chemistry
    • /
    • 제49권1호
    • /
    • pp.55-59
    • /
    • 2006
  • 본 연구는 게르마늄 강화 효모의 제조 공정을 위한 최적의 조건을 확인하고 제조된 게르마늄 강화 호모 내의 게르마늄 결합 상태 확인을 목적으로 수행하였다. 그 결과 영양소별 최적조건은 글루코스 3.0%, 효모추출물 0.3%, 펩톤 0.5%이었으며, 이 때 생성된 균체량은 67.4 mg/ml이었다. 또한 균체와 게르마늄 용액 혼합 비율은 1 : 0.5(50%), pH는 6.5 및 온도는 $35^{\circ}C$로 배양하는 조건이 높은 함량의 게르마늄을 효모 균체 내로 흡수시켜 게르마늄 강화 효모를 생산하는 것을 가능하게 하였다. 배양 과정을 통해 생산된 게르마늄 강화 효모는 배양 과정동안의 구조적 변화에 의해 효모 내에 흡수된 무기 형태인 $GeO_2$ 게르마늄과는 다른 구조를 나타내었다. 게르마늄 강화 효모는 효모 배양 과정을 통해 인체에 안전한 형태인 천연 유기 게르마늄을 형성하였다. 이는 각종 암, 성인병의 예방과 치료, 인체 면역력의 증진 등 건강 증진을 위한 새로운 기능성 원료로의 활용이 기대되며, 이에 대한 안전성 등의 지속적인 연구가 필요할 것으로 사료된다.

회분식 공정이 포함된 화학산업에서의 공급사슬 관리 모델 개발 (A Development of SCM Model in Chemical Industry Including Batch Mode Operations)

  • 박경민;하진국;이의수
    • Korean Chemical Engineering Research
    • /
    • 제46권2호
    • /
    • pp.316-329
    • /
    • 2008
  • 최근의 급변하는 시장 상황의 변화와 제품의 수요에 대한 다양한 요구는 회분식 공정에 의한 다품종 소량생산으로의 전환을 가져오게 하였다. 이러한 회분식 공정은 주로 정밀 화학 관련 제품들인 의약품, 생화학 제품, 농약, 고분자 소재 등의 생산에 사용되어 왔지만, 근래에는 윤활유, 섬유, 석유 화학, 식품 같은 제품의 생산에도 널리 적용되고 있다. 그러나 회분식 공정은 원료의 공급, 제품의 가격 등과 같은 불확실 변수에 의한 조업의 변화가 자주 발생하는 단점이 있다. 이러한 조업의 변화는 조업시간의 변동과 각 부분별 예측량이 달라져 시장 경쟁력을 잃게 된다. 이에 공급망 상에 위치한 각 부서별, 기업별 협력과 조정을 통한 총체적 관점에서의 최적화를 추구하는 공급사슬 관리에 관한 관심이 고도되고 있다. 이에 본 논문에서는 회분식 공정에 공급사슬 관리 기법을 도입하여 원자재의 구매에서부터 분배에 이르는 전과정에 대한 총체적인 최적해를 찾고 각 공급사슬간의 영향력을 조사, 분석하였다. 또한 본 논문에서는 생산계획과 상세일정계획 모델의 통합과 수요에 대한 단계별 예측을 통해 시장 변화와 불확실 변수(uncertainty)에 대한 적절한 대응방안을 모색하여, 회분식 공정에서의 공급사슬 관리 모델을 개발하였다. 이와 함께 각각의 공급사슬간 인터페이스를 통하여 정보와 물류의 통합이 이루어지게 하여, 실제 주문과 수요의 변화에 대하여 생산계획, 구매계획, 일정계획 및 분배계획을 수립하여 안정적인 공급이 이루어지게 하였다.