• 제목/요약/키워드: Manufacturing Flexibility

검색결과 369건 처리시간 0.024초

중탄소강과 스테인리스강의 Nd:YAG 레이저 이종용접에서 용접특성 (Dissimilar Metal Welding Characteristics for Medium Carbon Steel and Stainless Steel Using a Nd:YAG Laser)

  • 유영태;이현중;김진우
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.68-74
    • /
    • 2016
  • The Nd:YAG laser welding process is one of the most advanced manufacturing technologies owing to its high speed and penetration, and has increased the automation and flexibility of an entire industry. Laser welding of dissimilar metals has been widely used to improve the wear resistance and corrosion resistance of industrial parts. The objective of this research is to investigate the influence of process parameters on the welding of SM45C and STS304 with CW Nd:YAG lasers. Bead-on-plate welding tests were carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the dissimilar welding, the welding quality of the cut section, strain-stress behavior, and hardness of the welded part were investigated.

멀티 셀 유연생산환경을 위한 통합운용시스템 (An Integrated Shop Operation System for Multi-Cell Flexible Manufacturing Systems under Job Shop Environments)

  • 남성호;류광열;신정훈;권기억;이석우
    • 한국정밀공학회지
    • /
    • 제29권4호
    • /
    • pp.386-394
    • /
    • 2012
  • Recent trends in the flexible manufacturing systems are morphing cell control for the shop-wide production operation system and providing the integrated operation and execution system together with vendor-specific FMC/FMS platform. In these requirements, the shop-floor level operation system plays a role of coordinating the control activity of each cell, and has to provide flexibility for the complexity of mixed operations of various cells. This paper suggests a system architecture for the mixed environments of multi-cells and job shop, its corresponding enabling technologies based on comparative studies with other related studies and commercialized systems. This approach includes a process definition model considering the integration with upper BOM-BOP and external service modules, and reconfigurable device-level interface which provides dynamic interconnections with machine tools and cell controllers. The function modules and their implementation results are also described to provide the feasibility of the proposed approaches as the flexible shop-floor operation system for the multi-cell environments.

Multi-Layered Matrix Tablets with Various Tablet Designs and Release Profiles

  • Choi, Du-Hyung;Jeong, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권5호
    • /
    • pp.263-272
    • /
    • 2011
  • Tablet dosage forms have been preferred over other formulations for the oral drug administration due to their low manufacturing costs and ease of administrations, especially controlled-release applications. Controlled-release tablets are oral dosage forms from which the active pharmaceutical ingredient (API) is released over an intended or extended period of time upon ingestion. This may allow a decrease in the dosing frequency and a reduction in peak plasma concentrations and hence improves patient compliance while reducing the risk of undesirable side effects. Conventional singlelayered matrix tablets have been extensively utilized to deliver APIs into the body. However, these conventional single-layered matrix tablets present suboptimal delivery properties, such as non-linear drug delivery profiles which may cause higher side effects. Recently, a multi-layered technology has been developed to overcome or eliminate the limitations of the singlelayered tablet with more flexibility. This technology can give a good opportunity in formulating new products and help pharmaceutical companies enhancing their life cycle management. In this review, a brief overview on the multi-layered tablets is given focusing on the various tablet designs, manufacturing issues and drug release profiles.

유연다리로봇 복합구조 설계 및 제작 기술 연구 (Study of composite structure design and manufacturing for compliant legged robot)

  • 최락현;강유나;위디아 아울리아;이경제;이동하;권오석;문상준
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.410-413
    • /
    • 2012
  • A traditional fabrication method is very difficult to make small robots using embedded sensors, actuators and connectors. Fortunately, Shape Deposition Manufacturing can provide an alternative method, and it has many benefits. Firstly, the weight of robot can be lighter, as it can be consisted of composite materials. Secondly, SDM can make simple robot structures because this approach does not need to use connectors and fasteners. Lastly, SDM gives stiffness and flexibility at the specific parts. Therefore, in this paper, we present a design of 3 segment legs organized by SDM, what the SDM approach is, and compare SDM method with 3 segment prototype legs which uses a traditional approach and made by DGIST.

  • PDF

PLC 코드 작성을 위한 공정 분석 및 적용 방법 (The Process Analysis and Application Methods for PLC Code Programming)

  • 구락조;여성주;이강구;홍상현;박창목;박상철;왕지남
    • 산업공학
    • /
    • 제21권3호
    • /
    • pp.294-301
    • /
    • 2008
  • Agile and flexible manufacturing systems make it mandatory that a control program should have features such as agility, flexibility, and reusability in order to run manufacturing unit smoothly. PLCs are the most frequently used control program in manufacturing systems. PLC programs are mostly programmed by subcontraction, which makes correction of code very difficult. As a result, it may cause delay during down time and ramp up time which leads to big loss of revenue and goodwill. To prevent delay during the times, this paper proposes systematic process analysis and application method for programmable logic controller like LLD (Ladder Logic Diagram). The proposed method uses modified human-error investing techniques for documentation and transforming technique to program LLD from the documentation. Furthermore, this paper demonstrates an example of piston mechanism to explain the proposed method.

Trinocular Vision System을 이용한 물체 자세정보 인식 향상방안 (A Study on the Improvement of Pose Information of Objects by Using Trinocular Vision System)

  • 김종형;장경재;권혁동
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.223-229
    • /
    • 2017
  • Recently, robotic bin-picking tasks have drawn considerable attention, because flexibility is required in robotic assembly tasks. Generally, stereo camera systems have been used widely for robotic bin-picking, but these have two limitations: First, computational burden for solving correspondence problem on stereo images increases calculation time. Second, errors in image processing and camera calibration reduce accuracy. Moreover, the errors in robot kinematic parameters directly affect robot gripping. In this paper, we propose a method of correcting the bin-picking error by using trinocular vision system which consists of two stereo cameras andone hand-eye camera. First, the two stereo cameras, with wide viewing angle, measure object's pose roughly. Then, the 3rd hand-eye camera approaches the object, and corrects the previous measurement of the stereo camera system. Experimental results show usefulness of the proposed method.

TPS에 의한 가전제품의 생산라인 자동화 구축 (Study on Automatic Production Line for Home Appliance Goods Based on Toyota Production System)

  • 최성대;정선환;유종규
    • 한국산업융합학회 논문집
    • /
    • 제12권2호
    • /
    • pp.85-90
    • /
    • 2009
  • The Toyota production system (TPS) developed by Toyota corporation is a management principle and production model to improve values added through elimination of waste. Since the oil shock in 1970s, the TPS has drawn the worldwide attentions as a main factor of competitiveness of Japanese manufacturing system and has been studied and implemented in many countries regardless of size and types of industry. For the correspondence to various customer's requirement, it is required to establish on time delivery procedure and to shorten lead time. Therefore it intended to establish TPS which is adopted to 7 losses reduction and JIT(Just in Time). In this paper, the automatic production line for color TV manufacturing by TPS was developed and proved to push up two times of productivity, to reduce the 25 workers at a time, and to widen the flexibility of manufacturing from 14" to 25" TV.

  • PDF

유연제조시스템의 공정계획을 위한 다목적 진화알고리듬 (A multiobjective evolutionary algorithm for the process planning of flexible manufacturing systems)

  • 김여근;신경석;김재윤
    • 한국경영과학회지
    • /
    • 제29권2호
    • /
    • pp.77-95
    • /
    • 2004
  • This paper deals with the process planning of flexible manufacturing systems (FMS) with various flexibilities and multiple objectives. The consideration of the manufacturing flexibility is crucial for the efficient utilization of FMS. The machine, tool, sequence, and process flexibilities are considered In this research. The flexibilities cause to increase the Problem complexity. To solve the process planning problem, an this paper an evolutionary algorithm is used as a methodology. The algorithm is named multiobjective competitive evolutionary algorithm (MOCEA), which is developed in this research. The feature of MOCEA is the incorporation of competitive coevolution in the existing multiobjective evolutionary algorithm. In MOCEA competitive coevolution plays a role to encourage population diversity. This results in the improvement of solution quality and, that is, leads to find diverse and good solutions. Good solutions means near or true Pareto optimal solutions. To verify the Performance of MOCEA, the extensive experiments are performed with various test-bed problems that have distinct levels of variations in the four kinds of flexibilities. The experiments reveal that MOCEA is a promising approach to the multiobjective process planning of FMS.

Order Promising Rolling Planning with ATP/CTP Reallocation Mechanism

  • Chen, Juin-Han;Lin, James T.;Wu, Yi-Sheng
    • Industrial Engineering and Management Systems
    • /
    • 제7권1호
    • /
    • pp.57-65
    • /
    • 2008
  • Available-to-promise (ATP) exhibiting availability of manufacturing resources can be used to support customer order promising. Recently, one advanced function called Capable-to-promise (CTP) is provided by several modern APS (advanced planning system) that checks available capacity for placing new production orders or increasing already scheduled production orders. At the customer enquiry stage while considering the order delivery date and quantity to quote, both ATP and CTP are allocated to support order promising. In particular, current trends of mass customization and multi-side production chain derive several new constraints that should be considered when ATP/CTP allocation planning for order promising - such as customer's preference plants or material vendors, material compatibility, etc. Moreover, ATP/CTP allocation planning would be executed over a rolling time horizon. To utilize capacity and material manufacturing resource flexibly and fulfill more customer orders, ATP/CTP rolling planning should possess resource reallocation mechanism under the constraints of order quantities and delivery dates for all previous order promising. Therefore, to enhance order promising with reliability and flexibility to reallocate manufacturing resource, the ATP/CTP reallocation planning mechanism is needed in order to reallocate material and capacity resource for fulfilling all previous promised and new customer orders beneficially with considering new derived material and capacity constraints.

기저판의 탄성에 따른 유연촉각센서의 성능변화 연구 (Study on the Performance of Flexible Tactile Sensors According to the Substrate Stiffness)

  • 김송호;김호찬;이인환
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.104-109
    • /
    • 2021
  • Tactile sensors and integrated circuits that detect external stimuli have been developed for use in various industries. Most tactile sensors have been developed using the MEMS(micro electro-mechanical systems) process in which metal electrodes and strain sensors are applied to a silicon substrate. However, tactile sensors made of highly brittle silicon lack flexibility and are prone to damage by external forces. Flexible tactile sensors based on polydimethylsiloxane and using a multi-walled carbon nano-tube mixture as a pressure-sensitive material are currently being developed as an alternative to overcome these limitations. In this study, a manufacturing process of pressure-sensitive materials with low initial electrical resistance is developed and applied to the fabrication of flexible tactile sensors. In addition, flexible tactile sensors are developed with pressure-sensitive materials dispensed on a substrate with flexible mechanical properties. Finally, a study is conducted on the change in electrical resistance of pressure-sensitive materials according to the modulus of elasticity of the substrate.