• Title/Summary/Keyword: Manganese removal

Search Result 129, Processing Time 0.032 seconds

Utilization of Mineral Oxides to Attenuate Mn-EDTA and Fluoride (산화광물을 이용한 수중의 망간-EDTA, 불소 제거)

  • 현재혁;남인영
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.51-60
    • /
    • 1996
  • Removal of Mn-EDTA complex and fluoride by use of hematite and ferrite, which are the by-product to be disposed of as industrial wastes, was investigated. For the comparison of removal rate, Na-bentonite known as excellent absorbent of inorganic contaminants was included in the experiments. As the results of batch mode experiments, for manganese, ferrite-A revealed 48∼65% of removal capacity, ferrite-B 46∼57%, hematite 17∼26%, while Na-bentonite showed 10∼23% of removal, depending on the initial concentration. Meanwhile, in case of fluoride : hematite revealed 53 ∼63% of removal : ferrite-A 54∼63 %, while ferrite-B did 20∼38 %. From the results, it can be postulated that the capacity of hematite and ferrite to attenuate inorganic pollutants, especially when they form complex ions, is superior to that of Na-bentonite. Consequently, the mixing of such oxide minerals with Na-bentonite will reinforce the function of Na-bentonite, especially in the undergroud liner aspect.

  • PDF

Evaluation of Manganese Removal from Acid Mine Drainage by Oxidation and Neutralization Method (산화법과 중화법을 이용한 산성광산배수 내 망간 제거 평가)

  • Kim, Bum-Jun;Ji, Won-Hyun;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.687-694
    • /
    • 2020
  • Two oxidizing agents (KMnO4, H2O2), and one neutralizing agent (NaOH) were applied to evaluate Mn removal in mine drainage. A Mn2+ solution and artificial mine drainage were prepared to identify the Fe2+ influence on Mn2+ removal. The initial concentrations of Mn2+ and Fe2+ were 0.1 mM and 1.0 mM, respectively. The injection amount of oxidizing and neutralizing agents were set to ratios of 0.1, 0.67, 1.0, and 2.0 with respect to the Mn2+ mole concentration. KMnO4 exhibited a higher removal efficiency of Mn2+ than did H2O2 and NaOH, where approximately 90% of Mn2+ was removed by KMnO4. A black MnO2 was precipitated that indicated the oxidation of Mn2+ to Mn4+ after an oxidizing agent was added. In addition, MnO2 (pyrolusite) is a stable precipitate under pH-Eh conditions in the solution. However, relatively low removal ratios (6%) of Mn2+ were observed in the artificial mine drainage that included 1.0 mM of Fe2+. The rapid oxidation tendency of Fe2+ as compared to that of Mn2+ was determined to be the main reason for the low removal ratios of Mn2+. The oxidation of Fe2+ showed a decrease of Fe concentration in solution after injection of the oxidizing and neutralizing agents. In addition, Mn7+ of KMnO4 was reduced to Mn2+ by Fe2+ oxidation. Thus, the concentrations of Mn increased in artificial mine drainage. These results revealed that the oxidation method is more effective than the neutralization method for Mn removal in solution. It should also be mentioned that to achieve the Mn removal in mine drainage, Fe2+ removal must be conducted prior to Mn2+ oxidation.

Optimal Conditions for As(III) Removal by Filtration System Packed with Different Ratio of Iron-Coated Sand and Manganese-Coated Sand (철 및 망간코팅사 충전비를 달리한 여과시스템에서 3가 비소 제거의 최적 조건)

  • Chang, Yoon-Young;Kim, Kwang-Seob;Song, Ki-Hoon;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1186-1191
    • /
    • 2006
  • Removal efficiency of As(III) through oxidation and adsorption in column reactors was investigated at different ratios of manganese-coated sand(MCS) and iron-coated sand(ICS) : MCS-alone, ICS-alone and both of ICS and MCS. The breakthrough of arsenic immediately occurred from a column reactor with MCS-alone. However, most of the arsenic present in the effluent was identified as As(V) due to the oxidation of As(III) by MCS. While five-times delayed breakthrough of arsenic was observed from a column reactor with ICS-alone. At a complete breakthrough of arsenic, the removed As(III) was 36.1 mg with 1 kg ICS. To find an optimum ratio of ICS and MCS in the column packed with both ICS and MCS, the removal efficiency of As(III) was investigated at three different ratios of ICS/MCS with a fixed amount of ICS. The breakthrough time of arsenic was quite similar in the different ratios ICS/MCS. However, much slower breakthrough of arsenic was observed as the ratio of ICS/MCS decreased. As the ratio of ICS/MCS decreased the concentration of As(III) in the effluent decreased and then showed below 50 ppb at an equal amount of ICS and MCS, suggesting more efficient oxidation of As(III) by greater amount of MCS. When a complete breakthrough of arsenic occurred, the removed total arsenic with an equal amount of ICS and MCS was 68.5 mg with 1 kg of filter material.

Removal of As(III) and Phenol by Multi-functional Property of Activated Carbon Impregnated With Manganese (망간첨착 활성탄의 다기능성을 이용한 3가 비소 및 페놀 제거)

  • Yu, Mok-Ryun;Hong, Soon-Chul;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.52-58
    • /
    • 2008
  • Mn-impregnated activated carbon (Mn-AC) prepared at different conditions was applied in the treatment of synthetic wastewater containing both organic and inorganic contaminants. Phenol and As(III) was used as the representative organic and inorganic contaminants, respectively. After evaluation of the physicochemical characteristic and stability of Mn-AC, oxidation of As(III) as well as adsorption of phenol by activated carbon(AC) and Mn-AC were investigated in a batch reactor. To investigate the stability of Mn-AC, dissolution of Mn from each Mn-AC was measured pH ranging from 2 to 4. Although Mn-AC was unstable at a strong acidic condition, the dissoluted Mn was below 3 ppm at pH 4. XRD analysis of Mn-AC indicated that the mineral type of the impregnated manganese was $Mn_2O_3$. From the simultaneous treatment of As(III) and phenol by AC and Mn-AC, As(III) oxidation by Mn-AC was greater than that by AC at lower pH, while the reverse order was observed at higher pH. After impregnation of Mn onto AC, 13% decrease of the surface area was observed, causing 8% reduction of phenol removal. Considering removal properties of As(III) and phenol, Mn-AC could be applied in the simultaneous treatment of wastewater contaminated with multi-contaminants.

Removal Characteristic of Arsenic by Sand Media Coated with both Iron-oxide and Manganese-oxide (산화철 및 산화망간이 동시에 코팅된 모래 매질을 이용한 비소오염 제거특성 연구)

  • Kim, Byeong-Kwon;Min, Sang-Yoon;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.473-482
    • /
    • 2009
  • In this study, iron and manganese coated sand (IMCS) was prepared by mixing Joomoonjin sand with solutions having different molar ratio of manganese ($Mn^{2+}$) and iron ($Fe^{3+}$). Mineral type of IMCS was analyzed by X-ray diffraction spectroscopy. Removal efficiency of arsenic through As(III) oxidation and As(V) adsorption by IMCS having different ratio of Mn/Fe was evaluated. The coated amount of total Mn and Fe on all IMCS samples was less than that on sand coated with iron-oxide alone (ICS) or manganese-oxide alone (MCS). The mineral type of the manganese oxide on MCS and iron oxides on ICS were identified as ${\gamma}-MnO_2$ and mixture of goethite and magnetite, respectively. The same mineral type was appeared on IMCS. Removed amount As(V) by IMCS was greatly affected by the content of Fe rather than by the content of Mn. Adsorption of As(V) by IMCS was little affected by the presence of monovalent and divalent electrolytes. However a greatly reduced As(V) adsorption as observed in the presence of trivalent electrolyte such as $PO_4\;^{3-}$. As(III) oxidation efficiency by MCS in the presence of NaCl or $NaNO_3$ was two times greater than that in the presence of $PO_4\;^{3-}$. Meanwhile a greater As(III) oxidation efficiency was observed by IMCS in the presence of $PO_4\;^{3-}$. This was explained by the competitive adsorption between phosphate and arsenate on the surface of IMCS.

Biodegradation of Pyrene by the White Rot Fungus, Irpex lacteus

  • Hwang, Soon-Suk;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.344-348
    • /
    • 2000
  • Abstract The removal percentage (94%) of 100 ppm of pyrene in a shaken culture of white rot fungus, Irpex lacteus, was much higher than that in a static culture (37.9%). Over 90% of the pyrene disappeared with I. lacteus grown at $15-27^{\circ}C$, yet less than 50% was removed at $37^{\circ}C$. The transformation rates of pyrene ($4.5-5.0{\;}\mu\textrm{g}/ml/day$) were not very different among cultures with 5- 30% inoculum sizes, and over 90% of the 100 ppm pyrene was removed in every case during 20 days of incubation. The biodegradation of pyrene by I. lacteus was confirmed by measuring the $CO_2$ evolved from the mineralization of the added pyrene. The activity of lignin peroxidase (LiP), which is known to be involved in the biodegradation by white rot fungi, was high between 8 to 12 days of incubation. Although manganese peroxidase activity was demonstrated during the same period as LiP, its activity was quite low, and no laccase activity was detected. Even though the activity patterns of ligninolytic enzymes did not coincide with the pyrene removal, this study shows that I. lacteus has a high biodegrading capability and can be a candidate for the bioremediation of polycyclic aromatic hydrocarbon contaminants.inants.

  • PDF

Evaluation of Filter-Adsorber(F/A) Process for Removal of Disinfection By-products(DBPs) (소독부산물 제어를 위한 실공정 F/A 운영에 관한 고찰)

  • Kim, Seong-Su;Lee, Kyung-Hyuk;Lim, Jae-Lim;Chae, Seon-Ha;Kang, Byeong-Soo;Moon, Pil-Joong;Ahn, Hyo-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1035-1042
    • /
    • 2005
  • Granular Activated Carbon(GAC) is widely used in drinking water treatment. At S and B Water Treatment Plant, GAC is used in place of granular media in conventional rapid filters(GAC Filter-Adsorber) for removal of Disinfection By-products(DBPs). The primary focus of this study is on the performance of existing filter-adsorber, and their operation. It was found that F/A process removed turbidity as effective as sand system. The ratio of Hydrophobic DOM (HPO) and hydrophilic DOM (HPI) fraction in the raw water at S and B WTP was similar. Filter Adsorber presented earlier DOC breakthrough and steady state condition which was contributed by biodegradation during operation period. The removal efficiency of DBPs were used to evaluate the filter performance. The DBPs concentration of F/A treated water was below treatment goal level (THM < $80\;{\mu}g/L$, HAA < $60{\mu}g/L$). The removal efficiency of THM decreased rapidly during operation period. However, HAA were removed steadily regardless of the influent concentration of HAA. These results indicate that the removal of THM depend upon the adsorption mechanism while the removal of HAA depend upon biodegradation as well as adsorption. The decrease of adsorption capacity and characteristic value of GAC may be attributed to the effect of high organic loading, residual free chlorine, coagulants, manganese oxidants and frequently backwashing. This study has confirmed that Filter adsorber process can be considered as effective alternatives for the removal of DBPs, especially HAA.

Reevaluation of the Metabolic Essentiality of the Minerals - Review -

  • Spears, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.1002-1008
    • /
    • 1999
  • Essential metabolic functions have been identified for seven macrominerals (calcirum, phosprorus, magnesium, sodium, potassium, chloride, and sulfur), and eight microminerals (cobalt, copper, iodine, iron, manganese, molybdenum, selenium, and zinc). Major functions for each of these minerals are summarized. Considerable research suggests that chromium is also essential and that it functions by facilitating insulin activity. Studies are reviewed which indicate that chromium supplementation of animal diets may: 1) increase glucose removal from blood, 2) reduce carcass fat and increase lean in nonruminants, 3) alter egg cholesterol content, and 4) enhance immunity and disease resistance in ruminants. A number of other minerals including nickel, boron, vanadium, arsenic, silicon, lithum, and lead have been reported to be essential, but specific metabolic functions have not been defined for any of these elements. Limited research in poultry suggests that boron may be of practical significance in some instances.

Effect of Precursor and Pretreatment Condition on the Removal of Nitrogen Oxides over Manganese Oxides (망간산화물을 이용한 질소산화물 제거시 전구체 및 전처리 조건의 영향)

  • 정순관;임형근;홍성창;박영옥
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.477-478
    • /
    • 2003
  • 에너지 사용의 증대에 따라 대기중으로의 질소산화물 배출양이 증가하고 있으며, 이에 따른 산성비, 광화학 스모그등 많은 피해가 나타나고 있다. 이러한 질소산화물중 고정원에서 배출되는 질소산화물은 선택적 촉매환원법에 의해 제거가 되고 있다. 선택적 촉매 환원법에 사용되고 있는 촉매는 주로 V$_2$O$_{5}$/TiO$_2$ 계열로써 300 ~ 40$0^{\circ}C$ 영역에서 최적의 반응을 보인다(H. Bosch and F. Janssen, 1988). 그러나 촉매의 내구성 증진, 재가열에 따른 에너지 절감등의 이유로 저온에서 우수한 활성을 보이는 촉매의 개발이 필요하다. (중략)

  • PDF

Analysis of chromaticity cause in Jeju Eoseungsaeng Lake (제주도 어승생 저수지 색도 원인 분석)

  • Lee, Jeonghoon;Lee, Heenam;Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.381-389
    • /
    • 2016
  • Jeju Eoseungsaeng lake which is a main water resource of Eoseungsaeng water treatment plant($Q=15,000m^3/d$) experienced high chromaticity(40 CU) and pH(9.46) in 2013. This could decline customer's confidence on drinking water quality unless proper identification and removal of chromaticity were implemented. To find cause of chromaticity, water monitoring on various water parameters including TOC, algal cell count, Chl-a, turbidity, SS, conductivity, etc. were implemented. Iron and manganese were excluded from the cause of chromaticity due to its low concentration (i.e., < 0.02 mg/L). Correlation among water parameters showed that relationship between algal cell count and chromaticity was the highest(R=0.43), which suggested that presumably the main reason of chromaticity occurrence in Jeju Eoseungsaeng lake was algae.