• Title/Summary/Keyword: Manganese removal

Search Result 129, Processing Time 0.121 seconds

Physical Properties and Sulfidation Kinetics of Mn-Based Sorbent for Hydrogen Sulfide Removal (황화수소 제거를 위한 망간계 탈황제의 물리적 특성과 황화반응 속도)

  • Oh, Kwang-Joong;Shon, Byung-Hyun;Choi, Eun-Hwa;Yi, Gang Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2067-2076
    • /
    • 2000
  • The experiments have been made to develop manganese-based sorbent(MT, MFT) for the removal of hydrogen sulfide from simulated hot coal gases. Manganese-based sorbents were tested in an ambient-pressure fixed-bed reactor to calculate H2S removal efficiency. and a three hole jet attrition tester to characterize the sorbent physical properties. According to the experimental results of attrition test. the attrition resistance of 5% bentonite containing sorbent was higher than that of 2% bentonite. The attrition resistances of both sorbents increased with induration temperature. Effects of sulfidation temperature. space velocity. and $H_2S$ concentrations on the $H_2S$ removal efficiency were investigated. Experimental results showed that $H_2S$ could be removed from 5,100ppmv to 20ppmv at $450^{\circ}C$, and to 30~65ppmv at $550{\sim}650^{\circ}C$ for both MT/MFT sorbents. As for the change of space velocity, the breakthrough time was decreased with space velocity.

  • PDF

Chemical Mechanical Polishing Characteristics of Mixed Abrasive Silica Slurry (MAS) by adding of Manganese oxide (MnO2) Abrasive (산화망간이 첨가된 혼합 연마제 실리카 슬러리의 산화막 CMP 특성)

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1175-1181
    • /
    • 2019
  • In this paper, we have studied the chemical mechanical polishing(CMP) characteristics of mixed abrasive silica slurry(MAS) retreated by adding of manganese oxide(MnO2) abrasives within 1:10 diluted silica slurry. A slurry designed for optimal performance should produce high removal rates, acceptable polishing selectivity with respect to the underlying layer, low surface defects after polishing, and good slurry stability. The polishing performances of MnO2 abrasive-added MAS are evaluated with respect to their particle size distribution, surface morphology, and CMP performances such as removal rate and non-uniformity. As an experimental result, we obtained the comparable slurry characteristics compared to original silica slurry in the view-point of high removal rate and low non-uniformity. Therefore, our proposed MnO2-MAS can be useful to save on the high cost of slurry consumption since we used a 1:10 diluted silica slurry.

Removal of As(III) in Contaminated Groundwater Using Iron and Manganese Oxide-Coated Materials (철/망간 산화물 피복제를 이용한 오염지하수에서의 As(III)제거)

  • Kim Ju-Yong;Choi Yoon-Hyeong;Kim Kyoung-Woong;Ahn Joo Sung;Kim Dong Wook
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.571-577
    • /
    • 2005
  • Permeable reactive barrier using iron oxide coated sand is one of effective technologies for As(V) contaminated groundwater. However, this method is restricted to As(III), because As(III) species tends to be more weakly bound to adsorbent. In order to overcome the limitation of iron oxide coated sand application to As(III) contaminated groundwater, manganese oxide materials as promoter of As(III) removal were combined to the conventional technology in this study. For combined use of iron oxide coated sand and manganese oxide coated sand, two kinds of removal methods, sequential removal method and simultaneous removal method, were introduced. Both methods showed similar removal efficiency over $85\%$ for 6 hrs. However, the sequential method converted the As contaminated water to acid state (pH 4.5), on the contrary, the simultaneous method maintained neutral state (pH 6.0). Therefore, simultaneous As removal method was ascertained as a suitable treatment technology of As contaminated water. Moreover, for more effective As(III) remediation technique, polypropylene textile which has the characteristics of high surface area, low specific gravity and flexibility was applied as alternative material of sand. The combined use of coated polypropylenes by simultaneous method showed much more prominent and rapid remediation efficiency over $99\%$ after 6 hrs; besides, it has practical advantages in replacement or disposal of adsorbent for simple conventional removal device.

Removal of Soluble Mn(II) using Multifunctional Sand Coated with both Fe- and Mn-oxides (철과 망간이 동시에 코팅된 다기능성 모래를 이용한 용존 Mn(II) 제거)

  • Lim, Jae-Woo;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.193-200
    • /
    • 2010
  • This study evaluated treatability of soluble Mn(II) using multifunctional sand media simultaneously coated with iron and manganese. In the preparation of IMCS(Iron and Manganese Coated Sand), 0.05 M Mn(II) solution and Fe(III) solution was mixed with sand at pH 7. The mineral type of IMCS was identified as the mixture of ${\gamma}-MnO_2$, goethite and magnetite($F_{e3}O_4$). The contents of Mn and Fe coated onto sand were 826 and 1676 mg/kg, respectively. The $pH_{pzc}$ of IMCS was measured as 6.40. The removal of soluble Mn(II) using IMCS and oxidants such as NaOCl and $KMnO_4$ was investigated with variation of the solution pH, reaction time and Mn(II) concentration in a batch test. The removal of Mn(II) on IMCS was 34% at pH 7.4 and the removals of Mn(II) on IMCS in the presence of NaOCl(13.6 mg/L) at pH 7 and $KMnO_4$(4.8 mg/L) at pH 7.6 were 96% and 89%, respectively. The removal of Mn(II) using IMCS and oxidants followed a typical cationic type, showing a gradual increase of removal as the solution pH increased. The removal of Mn(II) was rapid in the first 6 hrs and then a constant removal was observed. The maximum removed amount of Mn(II) on IMCS-alone and IMCS in the presence of oxidants such as NaOCl(13.6 mg/L) and $KMnO_4$(4.8mg/L) were 833.3, 1428.6 and 1666.7 mg/kg, respectively. Mn(II) removal onto the IMCS in the presence of oxidants was well described by second-order reaction and Langmuir isotherm expression.

A Study on Simulation of Desulfurization in a Continuous Fluidized Bed Using Natural Manganese Ore (천연망간광석을 이용한 연속식 유동층 반응기에서 탈황모사에 관한 연구)

  • Hong, Sung Chang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.278-285
    • /
    • 2005
  • In the present work, a reaction of sulfur removal and simulation of desulfurization based on the grain model and two-phase theory were studied using natural manganese ore (NMO) as a sorbent in a continuous fluidized bed reactor. The effect of desulfurization was investigated through the grain model considered the change of pore structure as a function of desulfurization time, particle size of NMO, and diffusion velocity of $SO_2$ in the pores. Among these parameters, the diffusion of $SO_2$ in the pores of NMO was the most important factor. Moreover, the reaction of sulfur removal and desulfurization in a continuous fluidized bed reactor using NMO as a sorbent could be well predict through the grain model and two-phase theory, respectively.

The Removal of Silver in the Fixer Wastewater of X-ray Film Using Manganese Dioxide (이산화망간을 이용한 x-ray 필름 정착폐액중의 은 제거)

  • 박정호;오성훈;전용보;임찬섭;박승조
    • Resources Recycling
    • /
    • v.6 no.4
    • /
    • pp.11-16
    • /
    • 1997
  • The wastewater resulted from the process of developing and fuing for x-ray film manufachlring contains a lot of silvercomponent. The average concentation of silver-component is about 1,500 mgA. The wastewater contained silver-component is toxic when it is discharged to the natural ecosystem. So that we must to do pretreatment of wastewater prior to discharge. There are electrolysis. chemical precipitation, and metallic replacement as conventional lreabent proccss of fixer wastewater of x-ray film. Adsorption of silver-component in x-ray fkcr wastewater was carricd out this study. 'Ille manganese dioxide (MDO) reagent and the recovered manganese dioxide (RMDO) from the waste dry-cell were used for adsarbents. Adsorption of silvercomponent was wrried out at the batch and continuous type experimental equipment. The adsorption experiment results were obtained bom silver-component have some diifcrences according to adsorhents. The adsorption results of manganese dioxide reagent (MDO) were better ihan those of waste dry-ccU (RMDO), but the manganese dloxide recovered fmm waste dry-cell (RMDO) will be able la recognized as good adsorbent too.

  • PDF

Development of the Advanced Manganese-Based Sorbent for Hot Coal Gas Desulfurization (고온 석탄 가스 탈황을 위한 개선된 망간계 탈황제 개발)

  • Shon, Byung-Hyun;Choi, Eun-Hwa;Cho, Ki-Chul;Jeon, Dae-Young;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.291-302
    • /
    • 2000
  • This experiments have been made to develop of manganese-based sorbent for the removal of hydrogen sulfide from hot coal gases. Manganese-based sorbent were tested in an ambient-pressure fixed-bed reactor to determine steady state $H_2S$ concentrations, breakthrough times and feasibility of the sorbent when subjected to cycle sulfidation and regeneration testing. Effects of particle size of sorbent, temperature of sulfidation, regeneration temperature and regeneration characteristics on the $H_2S$ removal efficiency were investigated. Experimental results showed that the $H_2S$ removal efficiency was optimal when the temperature was about $800^{\circ}C$ and the smaller particle size, the better $H_2S$ removal efficiency but in the range of 0.214~0.631mm didn't influence it much. The equilibrium constant(K) is represented as a log(K)=3.396/T-1.1105 and the utilization efficiency of sorbents was about 92% at $800^{\circ}C$. Regeneration in air produced $SO_2$ concentration as high as 8.5% at $800^{\circ}C$, 8.4% at $850^{\circ}C$, and 8.8% at $900^{\circ}C$ and may be used in sulfuric acid production.

  • PDF