• Title/Summary/Keyword: Manganese peroxidase (MnP)

Search Result 52, Processing Time 0.026 seconds

The Role of Enzymes Produced by White-Rot Fungus Irpex lacteus in the Decolorization of the Textile Industry Effluent

  • Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • The textile industry wastewater has been decolorized efficiently by the white rot fungus, Irpex lacteus, without adding any chemicals. The degree of the decolorization of the dye effluent by shaking or stationary cultures is 59 and 93%, respectively, on the 8th day. The higher level of manganese-dependent peroxidase (MnP) and non-specific peroxidase (NsP) was detected in stationary cultures than in the cultures shaken. Laccase activities were equivalent in both cultures and its level was not affected significantly by the culture duration. Neither lignin peroxidase (LiP) nor Remazol Brilliant Blue R oxidase (RBBR ox) was detected in both cultures. The absorbance of the dye effluent was significantly decreased by the stationary culture filtrate of 7 days in the absence of Mn (II) and veratryl alcohol. In the stationary culture filtrate, three or more additional peroxidase bands were detected by the zymogram analysis.

Comparison of Lignocellulose degradation properties of Lentinula edodes varieties (표고(Lentinula edodes) 품종별 목질계 섬유소 분해효소 특성 비교)

  • Jeong, Sang-Wook;Jang, Eun-Kyoung;Choi, Seul-Ki;Seo, Kyoung-Sun;Jeong, Hee-Gyeong;Lee, Won-Ho;Ban, Seung-Eon
    • Journal of Mushroom
    • /
    • v.20 no.1
    • /
    • pp.29-33
    • /
    • 2022
  • In this study, five different Lentinula edodes cultivar (Chamaram, Sanbaekhyang, Sanjo 713ho, Sanjo 715ho, Sanjo 718ho) were evaluated for their ability to decolorize Remazol Brilliant Blue R (RBBR) in MEB medium, respectively. Chamaram and Sanjo 713ho decolorized RBBR rapidly in MEB medium within 3 and 5 days. The activities of manganese peroxidase (MnP) and laccase were determined on the MEB medium with and without lignin. Sanjo 713ho resulted the highest ligninolytic enzyme activities on incubation day 1, indicating of 1,213 U/mg of MnP activity and 1,421 U/mg of laccase activity.

Dye Removal by Phlebia tremellosa and Lignin Degrading Enzyme Transformants (아교버섯(Phlebia tremellosa)의 리그닌 분해효소 형질전환체를 이용한 염료의 탈색)

  • Kum, Hyun-Woo;Ryu, Sun-Hwa;Lee, Sung-Suk;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.93-95
    • /
    • 2010
  • White rot fungi which have lignin degrading enzymes show high degrading activity to diverse recalcitrant compounds such as polycyclic aromatic compounds, dyes, explosives and endocrine disrupting chemicals. We have examined decolorizing activity of dyes by Phlebia tremellosa and two transformants which had genetically transformed using laccase or manganese peroxidase (MnP) gene. In case of methyl green, wild type strain showed 50% decolorization while laccase transformant (TF2-1) and MnP transformant (T5) showed more than 90% decolorization on day 3. Remazol brilliant blue R(RBBR) was decolorized up to 85% by two transformants while the wild type showed 67% decolorization on day 3. Transformants TF2-1 and T5 both showed increased laccase and MnP activity respectively during the whole growing phase.

Analysis of lignocellulose degradation by Oak mushroom (Lentinula edodes) (원목재배용 표고(Lentinula edodes)의 목질섬유소 분해특성 비교)

  • Jeong, Sang-Wook;Jang, Eun-Gyeong;Jeong, Chan-Mun;Ko, Han-Gyu;Kwon, Hyuk-Woo;Ban, Seung-Eon
    • Journal of Mushroom
    • /
    • v.16 no.4
    • /
    • pp.272-278
    • /
    • 2018
  • Lignin degrading enzymes from Lentinula edodes have broad substrate specificities, and therefore can degrade a variety of recalcitrant compounds. In this study, the lignolytic biodegradation was investigated in five different L. edodes fungi (Chunbaegko, Sanjo 303ho, Poongnyunko, Baekhwahyang, and Soohyangko). The fungi were evaluated for their ability to decolorize Remazol Brilliant Blue R (RBBR) in malt extract broth medium. Sanjo 303ho, Poongnyunko, Baekhwahyang, and Soohyangko rapidly decolorized RBBR within 7 days. The activities of manganese peroxidase (MnP) and laccase were determined in the absence and presence of lignin. Poongnyunko displayed the highest ligninolytic activity on day 7 of incubation (2,809 U/mg and 2,230 U/mg for MnP and laccase, respectively).

Overproduction of Lignin Peroxidase from Phanerochaete chrysosporium PSBL-1 (Phanerochaete chrysosporium PSBL-1의 배양조건 최적화를 통한 Lignin Peroxidase의 과량생산)

  • 정병철;한윤전;장승욱;정욱진;원유정
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.228-235
    • /
    • 2000
  • Until now, it was diIliculi to overproduce lignin peroxidase(LiP) fiom Pl~anemchaete ch~ysosporium since the lack of optimized growth conditions. In this paper, we optimized the LIP production conditions and monitored LIP isozyines of fl chqsospoi.ium PSBL-1. The optimized condition includes sponge matrix support, no addition of $MnSO_4$, excess addition of niixogen source(48 inM diarmnonium), and addition of stabilizer(2 mM verakyl alcohol). Finally we obtained Lip activity of 1,800 unitsll. HI isozyne was overproduced when inyceliuin was cultivated in media containing $Mn^{2+}$ (2.73 inM) and excess nitrogen(48 11d4 diannnonium). Three azo dyes(acid yellow 9, congo ued, orange IT; each concenimtion of50 $\mu$M) we1-e rapidly decolorized within 2 inins by 0.4 un~t or Lip.

  • PDF

Decolorization of Azo, Triphenylmethane and Heterocyclic Dyes by Irpex zonatus BN2 (송곳니구름버섯(Irpex zonatus) BN2에 의한 아조계, 트리페닐메탄계 및 헤테로싸이클릭계 염료의 탈색)

  • Yoon, Kyung-Ha;Choi, Yang-Soon
    • The Korean Journal of Mycology
    • /
    • v.26 no.1 s.84
    • /
    • pp.8-15
    • /
    • 1998
  • The present research was undertaken to investigate the activity of ligninolytic enzymes and the decolorization capability of some dyes with Irpex zonatus BN2, isolated from nature and identified. For the assay of enzyme activities, the isolate did not produce lignin peroxidase (LiP) and veratryl alcohol oxidase (VAO), but laccase and manganese dependent peroxidase (MnP). While the activity for MnP was low $(61.6\;nmol/mg{\cdot}protein)$, its laccase activity was very high $(1185.9\;nmol/mg{\cdot}protein)$. Moreover, laccase had appeared earlier than MnP. When the isolate was incubated with each dye for 10 days, the decolorization rates of azo dyes, such as orange II, orange G, tropaeolin O and congo red were 98.0%, 97.4%, 99.0% and 95.3%, respectively. In case of heterocyclic dyes, eosin Y, toludine blue, methyl blue and azur B were 97.4 %, 98.7%, 99.9% and 94.0% respectively. Finally the results of triphenylmethane dye such as basic fuchsin, malachite green and crystal violet were 98.5%, 95.7% and 99.4%, respectively. The results suggest that laccase of Irpex zonatus BN2 should be played an important role in the decolorization of the dyes.

  • PDF

Ceriporia sp. ZLY-2010 in Biodegradation of Polychlorinated Biphenyls : Extracellular Enzymes Production and Effects of Cytochrome P450 Monooxygenase (Ceriporia sp. ZLY-2010에 의한 폴리염화비페닐류의 생분해 : 균체 외 효소활성 및 cytochrome P450 monooxygenase 영향)

  • Hong, Chang-Young;Gwak, Ki-Seob;Lee, Su-Yeon;Kim, Seon-Hong;Jeong, Han-Seob;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.469-480
    • /
    • 2011
  • In this study, to determine the ligninase activity related to the PCBs degradation of Ceriporia sp. ZLY-2010, the protein contents and manganese peroxidase (MnP) and laccase activities during cultivation on shallow stationary culture (SSC) medium were observed. 4 PCB congeners were selected depending on the number of chlorine substituted on biphenyl. Furthermore, to examine the effects of cytochrome P450 monooxygenase, the inhibition of cytochrome P450 monooxygenase was evaluated by measuring the biodegradation rate when inhibitor such as 1-aminobenzotriazole was added. The extracellular protein contents were affected by PCB congeners in culture media. The total protein in the culture medium showed the biggest differences between the samples containing 2,2',4,4',5,5'-hexachlorobiphenyl and the control. On the other hand, MnP and laccase activity showed dominant increases within samples containing 4,4'-dichlorobiphenyl and 2,3',4',5-tetrachlorobiphenyl. Cytochrome P450 monooxygenase was inhibited by adding inhibitor, 1-aminobenzotriazole in low concentration. Only 2.73% of 2,3',4',5-tetrachlorobiphenyl was degraed on day 1, and biodegradation of 2,2',4,4',5,5'-hexachlorobiphenyl was inhibited as well, showing about 20% of biodegradation rate.

Mutation Spectrum of Manganese (II) Peroxidase Gene in the Pleurotus ostreatus Mutants Induced by Gamma Radiation

  • Chang, Hwa-Hyoung;Lee, Young-Keun;Kim, Jae-Sung;Lee, Ki-Sung;Cho, Kyu-Seong
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.52-57
    • /
    • 2003
  • The mutational spectra in the manganese (II) peroxidase gene (mnp) of the Pleurotus ostreatus mutants induced by gamma radiation (Co$\^$60/) give evidence to prove the effect of gamma radiation on the gene. mnp of each mutant was cloned, sequenced and analyzed. Among the 1941 base pairs of the sequenced region of the mnP genes of 4 mutants (PO-5,-6,-15 and -16), nine mutational hotspots on which the same base was mutated simultaneously were found, additionally 6 mutations were also found at different positions in the mnp gene. These mutation-spectra were predominantly A:T\longrightarrowG:C transitions (50.1%). By the analysis of putative amino acid sequences, PO-5 and PO-16 mutants have 3 and 1 mutated residues, respectively. Since the mutational spectra reported herein are specific to the mnp gene, we propose that the mutational hotspots for the gamma radiation could be in the gene(5) within cells.

Enzymes of White-rot Fungi Cooperate in Biodeterioration of Lignin Barrier (목질리그닌의 생물학적 분해시 백색 부후균류 효소들의 상호작용)

  • Leonowicz, Andrzej;Cho, Nam-Seok;Wasilewska, Maria W.;Rogalski, Jerzy;Luterek, Jolanta
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.1-20
    • /
    • 1997
  • 목재를 분해시키는 담자균류들은 목재 및 목질복합체에 쉽사리 침투하여 복잡한 리그노셀룰로오스 복합체를 분해시킨다. 이러한 분해에는 많은 효소시스템들이 복합적으로 작용하면서 상호 협동하는 것으로 보고되고 있다. 지금까지 일려진 효소들은 통상 3개의 그룹으로 나눌 수 있는데 그 하나는 목재성분을 직접적으로 공격하는 효소균들, 예를 들면 cellulase complex, laccase(LAC), lignin peroxidase(LIP), horse-radish peroxidase(HRP), manganese-independent peroxidase(MIP) 및 protocatechuate 3,4-dioxygenase(PCD) 등이 있고, 두번째 그룹으로서 manganese-dependent peroxidase(MnP), aryl alcohol oxidase(AAO) 및 glyoxal oxidase(GLO) 등인데, 이들 효소들은 목질을 직접적으로 공격하지 않고 제1그룹의 효소들과 협동하여 작용하는 것으로 알려지고 있다. 제3그룹의 효소들은 glucose oxidase(GOD) 및 cellobiose : quinone oxidoreductase(CBQ)로서 feedback type의 효소들로서 목재고분자의 분해시 대사의 고리를 결합시켜 주는 매우 중요한 기능을 하는 효소군들이다. 그러나 이 이외에도 다른 분해기구가 밝혀지고 있으며 기타 효소들에 의한 리그노셀룰로오스의 분해반응기구의 해명에는 상당한 시간이 걸릴 것으로 사료된다.

  • PDF

Study of Functional Verification to Abiotic Stress through Antioxidant Gene Transformation of Pyropia yezoensis (Bangiales, Rhodophyta) APX and MnSOD in Chlamydomonas

  • Lee, Hak-Jyung;Yang, Ho yeon;Choi, Jong-il
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1217-1224
    • /
    • 2018
  • Seaweeds produce antioxidants to counteract environmental stresses, and these antioxidant genes are regarded as important defense strategies for marine algae. In this study, the expression of Pyropia yezoensis (Bangiales, Rhodophyta) ascorbate peroxidase (PyAPX) and manganese-superoxide dismutase (PyMnSOD) was examined by qRT-PCR in P. yezoensis blades under abiotic stress conditions. Furthermore, the functional relevance of these genes was explored by overexpressing them in Chlamydomonas. A comparison of the different expression levels of PyAPX and PyMnSOD after exposure to each stress revealed that both genes were induced by high salt and UVB exposure, being increased approximately 3-fold after 12 h. The expression of the PyAPX and PyMnSOD genes also increased following exposure to $H_2O_2$. When these two genes were overexpressed in Chlamydomonas, the cells had a higher growth rate than control cells under conditions of hydrogen peroxide-induced oxidative stress, increased salinity, and UV exposure. These data suggest that Chlamydomonas is a suitable model for studying the function of stress genes, and that PyAPX and PyMnSOD genes are involved in the adaptation and defense against stresses that alter metabolism.