Browse > Article
http://dx.doi.org/10.5658/WOOD.2011.39.6.469

Ceriporia sp. ZLY-2010 in Biodegradation of Polychlorinated Biphenyls : Extracellular Enzymes Production and Effects of Cytochrome P450 Monooxygenase  

Hong, Chang-Young (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Gwak, Ki-Seob (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Lee, Su-Yeon (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Kim, Seon-Hong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Jeong, Han-Seob (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Choi, In-Gyu (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.39, no.6, 2011 , pp. 469-480 More about this Journal
Abstract
In this study, to determine the ligninase activity related to the PCBs degradation of Ceriporia sp. ZLY-2010, the protein contents and manganese peroxidase (MnP) and laccase activities during cultivation on shallow stationary culture (SSC) medium were observed. 4 PCB congeners were selected depending on the number of chlorine substituted on biphenyl. Furthermore, to examine the effects of cytochrome P450 monooxygenase, the inhibition of cytochrome P450 monooxygenase was evaluated by measuring the biodegradation rate when inhibitor such as 1-aminobenzotriazole was added. The extracellular protein contents were affected by PCB congeners in culture media. The total protein in the culture medium showed the biggest differences between the samples containing 2,2',4,4',5,5'-hexachlorobiphenyl and the control. On the other hand, MnP and laccase activity showed dominant increases within samples containing 4,4'-dichlorobiphenyl and 2,3',4',5-tetrachlorobiphenyl. Cytochrome P450 monooxygenase was inhibited by adding inhibitor, 1-aminobenzotriazole in low concentration. Only 2.73% of 2,3',4',5-tetrachlorobiphenyl was degraed on day 1, and biodegradation of 2,2',4,4',5,5'-hexachlorobiphenyl was inhibited as well, showing about 20% of biodegradation rate.
Keywords
biodegradation; manganese peroxidase; laccase; cytochrome P450 monooxygenase; polychlorinated biphenyls; Ceriporia sp. ZLY-2010;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Quensen III, J. F., S. A. Boyd, and J. M. Tiedje. 1990. Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Applied and Environmental Microbiology 56(8): 2360-2369.
2 Ruiz-Aguilar, G. M. L., J. M. Fernandez-Sanchez, R. Rodriguez-Vazquez, and H. Poggi-Varaldo. 2002. Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil. Advances in Environmental Research 6(4): 559-568.   DOI   ScienceOn
3 Schmidt, O. 2006. Wood cell wall degradation. in: Wood and Tree fungi, (Ed.) D. Czeschlik, Springer-Verlag Berlin. Heidelberg, pp. 99-107.
4 Sjostrom, E. 1992. ch 4. Lignin. in: Wood chemistry : fundamentals and applications. Harcourt Brace Jovanovich. London, pp. 71-89.
5 Tien, M. 1987. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Critical reviews in microbiology 15(2): 141-168.   DOI
6 Tien, M. and T. K. Kirk. 1984. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique $H_2O_2$-requiring oxygenase. Proceedings of the National Academy of Sciences of the United States of America 81(8): 2280-2284.   DOI   ScienceOn
7 Valli, K., H. Wariishi, and M. H. Gold. 1992. Degrada-tion of 2, 7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Journal of bacteriology 174(7): 2131-2137.   DOI
8 Yadav, J., J. Quensen 3rd, J. M. Tiedje, and C. Reddy. 1995. Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Applied and Environmental Microbiology 61(7): 2560-2565.
9 Lee, S. M. 2005. Biodegradation of Dibutyl and Di (2-ethylhexyl) Phthalates by White Rot Fungus, Polyporus brumalis. in: Department of forest sciences, Vol. Ph.D. Thesis, Seoul National University. Seoul.
10 Lee, S. M., J. W. Lee, B. W. Koo, M. K. Kim, D. H. Choi, and I. G. Choi. 2007. Dibutyl phthalate biodegradation by the white rot fungus, Polyporus brumalis. Biotechnology and bioengineering 97(6): 1516-1522.   DOI   ScienceOn
11 Masaphy, S., D. Levanon, Y. Henis, K. Venkateswarlu, and S. Kelly. 1995. Microsomal and cytosolic cytochrome P450 mediated benzo (a) pyrene hydroxylation in Pleurotus pulmonarius. Biotechnology letters 17(9): 969-974.   DOI
12 Masaphy, S., D. Levanon, Y. Henis, K. Venkateswarlu, and S. L. Kelly. 1996. Evidence for cytochrome P 450 and P 450 mediated benzo (a) pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium. FEMS microbiology letters 135(1): 51-55.   DOI
13 Mori, T. and R. Kondo. 2002. Oxidation of dibenzo-p-dioxin, dibenzofuran, biphenyl, and diphenyl ether by the white-rot fungus Phlebia lindtneri. Applied microbiology and biotechnology 60(1): 200-205.   DOI   ScienceOn
14 Novotny, C., K. Svobodova, P. Erbanova, T. Cajthaml, A. Kasinath, E. Lang., and V. Sasek. 2004. Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biology and Biochemistry 36(10): 1545-1551.   DOI   ScienceOn
15 Hong, C. Y. 2011a. Biodegradation of polychlorinated biphenyls by white rot fungus, Ceriporia sp. ZLY-2010. in: Department of forest sciences, Vol. Master Science Thesis, Seoul National University. Seoul, pp. 56-61.
16 Ortiz de Montellano, P. R., J. M. Mathews, and K. C. Langry. 1984. Autocatalytic inactivation of cytochrome P-450 and chloroperoxidase by 1-aminobenzotriazole and other aryne precursors. Tetrahedron 40(3): 511-519.   DOI   ScienceOn
17 Pointing, S. 2001. Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology 57(1): 20-33.   DOI
18 Hofrichter, M. 2002. Review: lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial technology 30(4): 454-466.   DOI   ScienceOn
19 Hong, C. Y. 2011b. Biodegradation of polychlorinated biphenyls by white rot fungus, Ceriporia sp. ZLY-2010. in: Department of forest sciences, Vol. Master Science, Seoul National University. Seoul, pp. 44-55.
20 Huynh, V. B. and R. L. Crawford. 1985. Novel extracellular enzymes (ligninases) of Phanerochaete chrysosporium. FEMS microbiology letters 28(1): 119-123.   DOI
21 Kamei, I. and R. Kondo. 2005. Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p dioxin by the white-rot fungus Phlebia lindtneri. Applied microbiology and biotechnology 68(4): 560-566.   DOI
22 Kamei, I., S. Sonoki, K. Haraguchi, and R. Kondo. 2006. Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Applied microbiology and biotechnology 73(4): 932-940.   DOI
23 Keyser, P., T. Kirk, and J. Zeikus. 1978. Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. Journal of bacteriology 135(3): 790-797.
24 Bezalel, L., Y. Hadar, P. P. Fu, J. P. Freeman, and C. E. Cerniglia. 1996. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology 62(7): 2547-2553.
25 Kotze, A. 1997. Cytochrome P450 monooxygenase activity in Haemonchus contortus (Nematoda). International journal for parasitology 27(1): 33-40.   DOI   ScienceOn
26 Krcmar, P., A. Kubatova, J. Votruba, P. Erbanova, Novotn, and V. Sasek. 1999. Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World Journal of Microbiology and Biotechnology 15(2): 269-276.   DOI   ScienceOn
27 Bedard, D., R. Wagner, M. Brennan, M. Haberl, and J. Brown Jr. 1987. Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Applied and Environmental Microbiology 53(5): 1094-1102.
28 Borja, J., D. Taleon, J. Auresenia, and S. Gallardo. 2005. Polychlorinated biphenyls and their biodegradation. Process Biochemistry 40(6): 1999-2013.   DOI   ScienceOn
29 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72(1-2): 248-254.   DOI   ScienceOn
30 Claes von Wachenfeldt and E. F. Johnson. 1995. Structures of eudaryotic Cytochrmon P450 enzymes. in: Cytochrome P450-structure, Mechanism, and Biochemistry, (Ed.) Ortiz de Montellano, P.R, 1986 Plenum Press. New York, pp. 183-213.
31 Cabanne, F., D. Huby, P. Gaillardon, R. Scalla, and F. Durst. 1987. Effect of the cytochrome P-450 inactivator 1-aminobenzotriazole on the metabolism of chlortoluron andisoproturon in wheat* 1. Pesticide Biochemistry and Physiology 28(3): 371-380.   DOI
32 홍창영, 곽기섭, 이수연, 김선홍, 최인규. 2010. 폴리염화비페닐류의 생분해 우수 백색부후균 선발 및 분해율 분석. 목재공학 38(6): 586-578.   과학기술학회마을   DOI   ScienceOn
33 Eriksson K. E. and B. R. Ander P. 1990. Chapter 4. Biodegradation of lignin. in: Microbial and Enzymatic degradation of wood and wood components, Springer-Verlag Berlin, pp. 225-397.
34 Groves, J. T. 2005. Models and Mechanisms of Cytochrome P450 Action. in: Cytochrome P450: structure, mechanism, and biochemistry, (Ed.) P.R.O.d. Montellano, Kluwer Academic/Plenum Publishers. New York, pp. 1-15.
35 Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiology Reviews 13(2-3): 125-135.   DOI
36 이상훈, 서봉국. 2005. 잔류성 유기오염물질 Polychlorinated Biphenyls(PCBs) 분해 처리 기술 현황. 청정기술 11(1): 29-39.
37 장판식, 노봉수, 유상호, 김묘정, 김영완. 2010. 제6장 효소의 생산, 추출 및 정제. in: 이해하기 쉬운 식품효소공학, 수학사. 서울. pp. 208-212