• Title/Summary/Keyword: Maneuvering target

Search Result 201, Processing Time 0.024 seconds

Maneuvering Target Tracking in Uncertain Parameter Systems Using RoubustH_\inftyFIR Filters (견실한$H_\infty$FIR 필터를 이용한 불확실성 기동표적의 추적)

  • Yoo, Kyung-Sang;Kim, Dae-Woo;Kwon, Oh-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.270-277
    • /
    • 1999
  • This paper deals with the maneuver detection and target tracking problem in uncertain parameter systems using a robust{{{{ { H}_{ } }}}} FIR filter to improve the unacceptable tracking performance due to the parametr uncertainty. The tracking filter used in the current paper is based on the robust{{{{ { H}_{ } }}}} FIR filter proposed by Kwon et al. [1,2] to estimate the state signal in uncertain systems with parameter uncertainty, and the basic scheme of the proposed method is the input estimation approach. Tracking performance of the maneuver detection and target tracking method proposed is compared with other techniques, Bogler allgorithm [4] and FIR tracking filter [2], via some simulations to examplify the good tracking performance of the proposed method over other techniques.

  • PDF

OPTIMAL IMPACT ANGLE CONTROL GUIDANCE LAWS AGAINST A MANEUVERING TARGET

  • RYOO, CHANG-KYUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.235-252
    • /
    • 2015
  • Optimal impact angle control guidance law and its variants for intercepting a maneuvering target are introduced in this paper. The linear quadratic(LQ) optimal control theory is reviewed first to setup framework of guidance law derivation, called the sweep method. As an example, the inversely weighted time-to-go energy optimal control problem to obtain the optimal impact angle control guidance law for a fixed target is solved via the sweep method. Since this optimal guidance law is not applicable for a moving target due to the angle mismatch at the impact instant, the law is modified to three different biased proportional navigation(PN) laws: the flight path angle control law, the line-of-sight(LOS) angle control law, and the relative flight path angle control law. Effectiveness of the guidance laws are verified via numerical simulations.

The study on target tracking filter using interacting multiple model for tracking maneuvering target (기동표적 추적을 위한 상호작용다수모델 추적필터에 관한 연구)

  • Kim, Seung-Woo
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.137-144
    • /
    • 2007
  • Fire Control System(FCS) errors can be classified as hardware errors and software errors, and one of the software errors is from target tracking filter which estimates target's location, velocity, acceleration, and so on. It affects function of ballistic calculation equipment significantly. For gun to form predicted hitting point accurately and enhance hitting rate, we need status information of target's future location. Target tracking filter algorithms consist of Single Singer Model, Fixed Gain filter algorithm, IMM, PBIMM and so on. This paper will design IMM tracking filer, which is going to be! applied to domestic warship. Target tracking filter using CV model, Song model and CRT model for IMM tracking filter is made, and tracking ability is analyzed through Monte-Carlo simulation.

  • PDF

A Study of Optimization of α-β-γ-η Filter for Tracking a High Dynamic Target

  • Pan, Bao-Feng;Njonjo, Anne Wanjiru;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • The tracking filter plays a key role in accurate estimation and prediction of maneuvering the vessel's position and velocity. Different methods are used for tracking. However, the most commonly used method is the Kalman filter and its modifications. The ${\alpha}-{\beta}-{\gamma}$ filter is one of the special cases of the general solution provided by the Kalman filter. It is a third order filter that computes the smoothed estimates of position, velocity, and acceleration for the nth observation, and predicts the next position and velocity. Although found to track a maneuvering target with good accuracy than the constant velocity ${\alpha}-{\beta}$ filter, the ${\alpha}-{\beta}-{\gamma}$ filter does not perform impressively under high maneuvers, such as when the target is undergoing changing accelerations. This study aims to track a highly maneuvering target experiencing jerky motions due to changing accelerations. The ${\alpha}-{\beta}-{\gamma}$ filter is extended to include the fourth state that is, constant jerk to correct the sudden change of acceleration to improve the filter's performance. Results obtained from simulations of the input model of the target dynamics under consideration indicate an improvement in performance of the jerky model, ${\alpha}-{\beta}-{\gamma}-{\eta}$ algorithm as compared to the constant acceleration model, ${\alpha}-{\beta}-{\gamma}$ in terms of error reduction and stability of the filter during target maneuver.

A Variable Dimensional Structure with Probabilistic Data Association Filter for Tracking a Maneuvering Target in Clutter Environment (클러터 환경하에서 기동표적의 추적을 위한 가변차원 확률 데이터 연관 필터)

  • 안병완;최재원;송택렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.747-754
    • /
    • 2003
  • An enhancement of the probabilistic data association filter is presented for tracking a single maneuvering target in clutter environment. The use of the variable dimensional structure leads the probabilistic data association filter to adjust to real motion of a target. The detection of the maneuver for the model switching is performed by the acceleration estimates taken from a bias estimator of the two stage Kalman filter. The proposed algorithm needs low computational power since it is implemented with a single filtering procedure. A simple Monte Carlo simulation was performed to compare the performance of the proposed algorithm and the IMMPDA filter.

The Activation-Only VSIMM Algorithm for Maneuvering Target Tracking (기동표적 추적을 위한 Activation-Only VSIMM)

  • Choe, Seong-Hui;Song, Taek-Ryeol
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.381-388
    • /
    • 2002
  • This paper suggests the activation-only VSIMM estimator, applied mainly to target tracking problems. This algorithm is much simpler and easier to implement than the ordinary VSIMM algorithm. Also the activation-only VSIMM algorithm provides a substantial reduction in computation while having identical performance with the ordinary VSIMM estimator and the FSIMM estimator. More importantly, the drawbacks related to the improper termination and activation inherent to the VSIMM algorithm are eliminated in this algorithm. The performance of this estimator will be shown through a Monte Carlo simulation for maneuvering target tracking in comparison with the FSIMM and the VSIMM.

GA-Based IMM Method Using Fuzzy Logic for Tracking a Maneuvering Target (기동 표적 추적을 위한 GA 기반 IMM 방법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.166-169
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model, and the GA is applied to identify this fuzzy model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF

GA-Based IMM Method for Tracking a Maneuvering Target (기동 표적 추적을 위한 유전 알고리즘 기반 상호 작용 다중 모델 기법)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2382-2384
    • /
    • 2002
  • The accuracy in maneuvering target tracking using multiple models is caused by the suitability of each target motion model to be used. The interacting multiple model (IMM) algorithm and the adaptive IMM (AIMM) algorithm require the predefined sub-models and the predetermined acceleration intervals, respectively, in consideration of the properties of maneuvers in order to construct multiple models. In this paper, to solve these problems intelligently, a genetic algorithm (GA) based-IMM method using fuzzy logic is proposed. In the proposed method, the acceleration input is regarded as an additive noise and a sub-model is represented as a set of fuzzy rules to model the time-varying variances of the process noises of a new piecewise constant white acceleration model. The proposed method is compared with the AIMM algorithm in simulations.

  • PDF

Design of Fuzzy IMM Algorithm based on Basis Sub-models and Time-varying Mode Transition Probabilities

  • Kim Hyun-Sik;Chun Seung-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.559-566
    • /
    • 2006
  • In the real system application, the interacting multiple model (IMM) based algorithm requires less computing resources as well as a good performance with respect to the various target maneuverings. And it further requires an easy design procedure in terms of its structures and parameters. To solve these problems, a fuzzy interacting multiple model (FIMM) algorithm, which is based on the basis sub-models defined by considering the maneuvering property and the time-varying mode transition probabilities designed by using the mode probabilities as inputs of a fuzzy decision maker, is proposed. To verify the performance of the proposed algorithm, airborne target tracking is performed. Simulation results show that the FIMM algorithm solves all problems in the real system application of the IMM based algorithm.

IMM Method Using Kalman Filter with Fuzzy Gain

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.234-239
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, the unknown acceleration input for each sub-model is determined by mismatches between the modelled target dynamics and the actual target dynamics. After a acceleration input is detected, the state estimates for each sub-filter are modified. To modify the accurate estimation, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model(AIMM) method and input estimation (IE) method through computer simulations.