• 제목/요약/키워드: Maneuverability of naval ship

검색결과 59건 처리시간 0.03초

설계 생산성 향상을 위한 혼-타입 타 설계 프로그램 개발 (Development of Horn-Type Rudder Design Program to Increase Design-Productivity)

  • 이왕수;유용완;최광석;박노준
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2009년도 특별논문집
    • /
    • pp.47-51
    • /
    • 2009
  • It is well known that a rudder is influential devices to help ship maintain its stable performances, such as a course-keeping and maneuverability. In the procedures of a commercial ship design proper rudder dimensions (area and shape) ensuring better ship maneuverability have been settled in an initial concept design stage performed by a preceding department, without little structural consideration. It is true that there are time discrepancy between an initial design and a structural analysis stage. Therefore structural analysis results would sometimes cause a rudder to modify its dimensions. Most of these cases, however, ship design and performance tests had been finished. In this matter, only limited modifications of redder could be carried out. Besides, these could also cause bad effects on productivity. Finally, it is necessary to develop a new program considering co-relationship between an initial rudder design and a following work, a structural strength analysis, in order to enhance productivity and minimize a rate of redesign procedures.

  • PDF

CPMC 구속모형시험에 의한 KCS 선형의 조종성능 추정 (Prediction of Maneuverability of KCS by CPMC Captive Model Test)

  • 김연규;여동진;김선영;윤근항;오병익
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.553-561
    • /
    • 2009
  • This paper presents the results of prediction of maneuverability of KCS by CPMC captive model test. The CPMC(Computerized Planar Motion Carriage) with captive model test equipment is installed at Ocean Engineering Tank of MOERI. KCS is the container ship which was open to the world by MOERI. And the test results for the prediction of maneuverability were presented by NMRI in Japan. The research results about the maneuverability of KCS were presented at SIMMAN 2008 Workshop in Denmark. The results of test and simulation of this paper are compared with the results of simulation by MOERI using test results of NMRI and simulation results by NMRI.

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • 한국해양공학회지
    • /
    • 제36권3호
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.

선미 형상을 반영한 조종 유체력 미계수 추정에 관한 연구 (A Study on the Maneuvering Hydrodynamic Derivatives Estimation Applied the Stern Shape of a Vessel)

  • 윤승배;김동영;김상현
    • 대한조선학회논문집
    • /
    • 제53권1호
    • /
    • pp.76-83
    • /
    • 2016
  • The various model tests are carried out to estimate and verify a ship performance in the design stage. But in view of the cost, the model test should be applied to every project vessel is very inefficient. Therefore, other methods of predicting the maneuverability with confined data are required at the initial design stage. The purpose of this study is to estimate the hydrodynamic derivatives by using the multiple regression analysis and PMM test data. The characteristics of the stern shape which has an important effect on the maneuverability are applied to the regression analysis in this study. The correlation analysis is performed to select the proper hull form coefficients and stern shape factors used as the variables in the regression analysis. The comparative analysis of estimate results and model test results is conducted on two ships to investigate the effectiveness of the maneuvering hydrodynamic derivatives estimation applied the stern shape. Through the present study, it is verified that the estimation using the stern shape factors as the variables are valid when the stern shape factors are located in the center of the database.

A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

  • You, Youngjun;Rhee, Key-Pyo;Ahn, Kyoungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권2호
    • /
    • pp.188-198
    • /
    • 2013
  • In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

Ship Collision Avoidance System Considering Ship' Maneuverability

  • Lee, Seung-Keon;Surendran, S.;Im, Nam-Kyun;Hwang, Sung-Jun
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.95-100
    • /
    • 2006
  • A ship collision avoidance system is developed to control the avoidance action of ship actually and properly in wind forces. The 4-DOF maneuvering equations of motion ar derived to catty out the simulation of the motion of a ship, and the wind forces are considered as the external forces in the simulation. This study suggests a new avoidance system that could include the ship's maneuvering characteristics.

  • PDF

플랩을 갖는 날개 주위의 유동 특성과 PIV 해석에 관한 연구 (A Study of the Flow Pattern and the PIV Analysis around a Flapped Foil)

  • 이경우;최희종;이승건
    • 한국항해항만학회지
    • /
    • 제29권6호
    • /
    • pp.509-513
    • /
    • 2005
  • 선박의 조종성능은 선체와 프로펠러 그리고 하의 상호작용에 의하여 결정되며 선박의 항해 시 선박의 안전성과 밀접한 관계를 가지고 있다. 그 중에서 선체에 부착된 타의 성능은 선박의 조종성능과 직접적인 관계를 가지고 있으며, 타에 의한 선박의 조종성능을 향상시키기 위하여 특수타를 채택하는 사례가 늘어가고 있는 실정이다. 본 논문에서는 특수타의 일종인 플랩타의 2차원 단면에 대한 연구를 수행하였다. 플랩타의 성능을 예측하기 위하여 주날개의 받음각과 플랩의 각도를 바꾸어 가면서 모형실험을 수행하였으며 모형실험 시 유동장내의 속도분포를 얻기 위하여 PIV 계측기법 중 동일임자 추적법의 하나인 2프레림 입자추적법을 사용하였다. 모형실험은 $Re=1.027{\times}10^4$에서 수행하였으며, 계측된 결과들을 서로 비교하였다.

주성분 분석을 통한 선박 조종 중 4자유도 동역학 특성 연구 (A Study on 4DOF Ship Dynamics in Maneuver by Principal Component Analysis)

  • 김동환;김민창;이승범;서정화
    • 대한조선학회논문집
    • /
    • 제61권1호
    • /
    • pp.29-43
    • /
    • 2024
  • The present study concerns a feasibility study for applying principal component analysis to ship dynamics in maneuver. Using the four degrees of freedom standard modular model for ship dynamics maneuver simulations of large angle zigzag tests with rudder deflection angle variations are conducted. The datasets of ship motion, hydrodynamic force, and moment during the maneuver are acquired to identify the principal modes. The covariance matrix of obtained ship dynamics variables shows a strong linear correlation between the motion, hydrodynamic force, and moment, except the surge force. Four eigenvectors of the covariance matrix are selected as the principal modes of ship dynamics. Using the principal modes, ship motion in turning circle and zigzag tests is reconstructed, showing good agreement with the original data.

조종성능을 고려한 파랑 중 선박의 직진성능에 관한 연구 (A Study on the Course Keeping Ability under Wave Condition Considering Ship's Maneuverability)

  • 강동훈;이순섭;이승재
    • 해양환경안전학회지
    • /
    • 제19권2호
    • /
    • pp.193-199
    • /
    • 2013
  • 파랑 중 선박의 직진성능을 시뮬레이션을 통하여 비교 검토하였다. 시뮬레이션을 구성하기위해 선박의 3자유도 조종운동방정식을 사용했으며, 선박에 가해지는 파랑강제력은 3차원 특이점 분포법을 사용하여 계산하였다. 시뮬레이션의 외란으로서 규칙파와 불규칙파를 사용하였고 최대사용타각과 제어시간지연을 제어기의 제한조건으로 설정하였다. 조종성능에 따른 직진성능을 검토하기 위해 유체력 미계수를 인위적으로 변화시킴으로서 조종성능이 다른 선박의 시뮬레이션을 구성하였다. Autopilot제어기를 사용한 일정시간의 선박의 직진 시뮬레이션을 수행하고 해당시간동안의 직진거리를 비교하여 선박의 직진성능을 검토하였다.

초기설계시 선박의 선미 형상을 고려한 조종성능 추정에 관한 연구 (A Study on the Prediction of the Maneuverability of Ships at Initial Design Stage, Considering Stern Form)

  • 이승건;최재영;서영석;이우진
    • 대한조선학회논문집
    • /
    • 제36권2호
    • /
    • pp.72-76
    • /
    • 1999
  • 선박의 조종성능을 추정하기 위해서는 모형시험을 수행하는 것이 가장 신뢰성 있는 방법이다. 그러나 선박의 초기설계단계에서 주요목, 프로펠러 그리고 타의 특성들과 같은 한정된 자료로써 선박의 전반적인 조종성능을 추정하기 위한 다른 방법이 필요하다. 이 논문에서 일본의 연구원들에 의해 수행된 구속 모형시험을 이용하여 Sway Force와 Yaw moment의 선형미계수에 대한 새로운 추정식을 제안하였다. 이 방법에 의해 선박의 조종성능을 평가하는 경우, 선미 Frame Line 형상과 선미 Profile의 영향을 고려할 수 있다. 두 척의 모형선을 대상으로 조종운동 Simulation과 자유항주시험을 비교하여, 본 추정법의 유용성을 검토하였다.

  • PDF