• 제목/요약/키워드: Maneuverability of naval ship

검색결과 59건 처리시간 0.023초

CFD 해석을 활용한 선박의 순수 횡동요 시험 연구 (Study on Pure Roll Test of a Ship Using CFD Simulation)

  • 마이티로안;보안코아;윤현규
    • 대한조선학회논문집
    • /
    • 제59권6호
    • /
    • pp.338-344
    • /
    • 2022
  • Roll moment usually is ignored when analyzing the maneuverability of surface ships. However, it is well known that the influence of roll moment on maneuverability is significant for ships with small metacentric height such as container ships, passenger ships, etc. In this study, a pure roll test is performed to determine the hydrodynamic derivatives with respect to roll motion as added mass and damping. The target ship is an autonomous surface ship designed to carry containers with a small drift and large freeboard. The commercial code of STAR CCM+ software is applied as a specialized tool in naval hydrodynamic based on RANS equation for simulating the pure roll of the ship. The numerical uncertainty analysis is conducted to verify the numerical accuracy. By distinguishing the in-phase and out-of-phase from hydrodynamic forces and moments due to roll motion, added mass derivatives and damping derivatives relative to roll angular velocity are obtained.

KCS 선형의 4자유도 조종성능 추정 (Prediction of Maneuverability of KCS with 4 Degrees of Freedom)

  • 김연규;여동진;손남선;김선영;윤근항;오병익
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.267-274
    • /
    • 2011
  • This paper presents the results of prediction of maneuverability of KCS about 4 degree of freedom(DOF) including roll motion. The prediction is carried out by CPMC captive model test. The CPMC(Computerized Planar Motion Carriage) with captive model test equipment including roll moment gage is installed at Ocean Engineering Tank of MOERI. KCS is the container ship open to the world by MOERI. To predict the 4 DOF maneuverability of a ship some tests with roll angle are conducted. And the prediction results of maneuverability by simulation are compared with the results of free running model test. The simulation results agree well with those of free running model tests.

A Study on Sensitivity Analysis of the Hydrodynamic Derivatives on the Maneuverability Prediction of KVLCC2 in Shallow Water by Model Test

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Yoon, Hyeon Kyu
    • 한국항해항만학회지
    • /
    • 제44권2호
    • /
    • pp.98-109
    • /
    • 2020
  • In recent years, there have been concerted efforts toward predicting ship maneuvering in shallow water since the majority of ship's accidents near harbors commonly occur in shallow and restricted waters. Enhancement of ship maneuverability at the design stage is crucial in ensuring that a ship navigates safely. However, though challenging, establishing the mathematical model of ship maneuvering motion is recognized as crucial toward accurately predicting the assessment of maneuverability. This paper focused on a study on sensitivity analysis of the hydrodynamic coefficients on the maneuverability prediction of KVLCC2 in shallow waters. Hydrodynamic coefficients at different water depths were estimated from the experimental results conducted in the square tank at Changwon National University (CWNU). The simulation of standard maneuvering of KVLLC2 in shallow waters was compared with the results of the Free Running Model Test (FRMT) in shallow waters from other institutes. Additionally the sensitivity analysis of all hydrodynamic coefficients was conducted by deviating each hydrodynamic derivative from the experimental results. The standard maneuvering parameters including turning tests and zig-zag maneuvers were conducted at different water depths and their effects on the standard maneuvering parameters were assessed to understand the importance of different derivatives in ship maneuvering in shallow waters.

선박의 조종특성을 고려한 운항안전성능의 수치화 방법에 관한 연구 (A Study on Quantifying Sailing Safety Considering Maneuverability of a Vessel)

  • 유영준;김세원;김우진
    • 대한조선학회논문집
    • /
    • 제54권2호
    • /
    • pp.113-124
    • /
    • 2017
  • Recently, ship owners are requiring an assessment of sailing safety of a ship from an analysis considering maneuverability and environmental loads etc. In this paper, we propose a new approach to assess sailing safety by considering the prescribed parameters. The concept of sailing safety is developed from DP capability analysis and is based on the maneuvering simulations. While the ship is continuously disturbed due to irregular environmental loads during the simulations, it is steered to keep its course along the way points assumed along a straight path. After relative distances between four edges of the ship and allowable safety boundaries are calculated for 3 hours, the minimum values are obtained. The minimum distances are marked on a polar chart and we call this a quantified safe operation judgment chart which indicates quantified sailing safety.

쌍축 추진 LNG선의 단독 추진기 고장 상태에서의 조종성능에 대한 수치적 연구 (A Numerical Study on the Maneuverability of a Twin-Screw LNG Carrier under Single Propeller Failure)

  • 유영준;최진우
    • 대한조선학회논문집
    • /
    • 제54권3호
    • /
    • pp.204-214
    • /
    • 2017
  • Recently, ship owners have been requiring the assessment of the maneuverability of a twin-screw ship under machinery failures. In this paper, we are only focused on the propulsion failure among propulsion failure, power supply failure, steering system failure etc. First of all, the mathematical model for the twin-screw 174K LNGC is verified by comparing the simulated results for $35^{\circ}$ turning test, $10^{\circ}/10^{\circ}$ zigzag test and $20^{\circ}/20^{\circ}$ zigzag test under normal operating condition and those obtained from free running model tests. And, sea trial results of 216K LNGC under single propeller failure are compared with those of 174K LNGC under identical condition to verify the proposed method to predict maneuverability under single propeller failure. After the straight line maneuver is simulated under the single propeller failure, the speed and equilibrated heading and rudder deflection angles at steady state are predicted. After the IMO maneuvering tests are simulated under the single propeller failure, the results are reviewed to investigate the maneuvering characteristics due to the failure.

풍력(風力) 및 횡요(橫搖)의 영향(影響)을 고려(考慮)한 선박(船舶)의 조종성능(操縱性能)에 관한 연구(硏究) (A Study on the Maneuverability of a Rolling Ship under Wind Forces)

  • 김진안;이승건
    • 대한조선학회지
    • /
    • 제21권1호
    • /
    • pp.3-12
    • /
    • 1984
  • Up to now, it has been common to treat the maneuvering motion of a ship as a 3-degree-freedom motion i.e. surge, sway and yaw on the sea surface, for the simplicity and mathematical calculation, and it is quite acceptable in the practical point of view. Meanwhile, considering the maneuverability of a ship under the special conditions such as in irregular waves, in wind or at high speed with small GM value, it is required that roll effect must be considered in the equation of ship motion. In this paper the author tried to build up the 4-degree-freedom motion equation by adding roll. And then, applying the M.M.G.'s mathematical model and with captive model test results the roll-coupled hydrodynamic derivatives were found. With these the author could make some simulating program for turning and zig-zag steering. Through the computer simulations, the effect of roll to the ship maneuver became clear. The effect of the wind force to the maneuverability was also found. Followings are such items that was found. 1) When roll is coupled in the maneuvering motion, the directional stability becomes worse and the turning diameter becomes smaller as roll becomes smaller as roll becomes larger. 2) When maneuver a ship in the wind, the roll becomes severe and the directional stability becomes worse. 3) When a ship turns to the starboard side, the wind blowing from 90 degree direction to starboard causes the largest roll and the largest turning diameter, and the wind from other direction doesn't change the turning diameter. 4) When a ship is travelling with a constant speed with rudder amidship, if steady wind blows from one direction, the ship turns toward that wind. This phenomenon is observed in the actual seaways.

  • PDF

2축 POD 여객선의 조종운동 수학모형 특성 연구 (Study of a Characteristics of Maneuvering Mathematical Model of Twin POD Cruise Ship)

  • 김연규;윤근항;김선영;손남선
    • 대한조선학회논문집
    • /
    • 제50권6호
    • /
    • pp.429-435
    • /
    • 2013
  • Recently, to improve the safety and maneuverability at fairway around harbor the POD system has been equipped on a ship. And the interest about maneuvering characteristics of a cruise ship has been increasing. In this paper the mathematical model of maneuvering motion of a cruise ship with twin POD system in general speed and slow speed are presented. And the maneuvering coefficients of mathematical model are obtained from the captive model tests using CPMC(Computerized Planar Motion Carriage). Computer simulation using mathematical model in general speed and slow speed are carried out and compared with the results of free running model test with the same model ship. The differences between the mathematical models are compared and discussed. In this paper the mathematical models, the results of captive model test and simulation results are presented.

Control system design for vessel towing system by activating rudders of the towed vessel

  • Lee, Dong-Hun;Chakir, Soumayya;Kim, Young-Bok;Tran, Duc-Quan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.943-956
    • /
    • 2020
  • In this study, the motion control problem of the vessel towed by a towing ship (tugboat) is considered. The non-powered towed ship is dragged by the towing ship. Even though the towed ship is equipped with propulsion systems, they cannot be used at low or constant speeds due to safety issues. In narrow canals, rivers, and busy harbor areas especially, where extreme tension is required during towing operation, the course stability of the towed vessel depends on the towing ship. Therefore, the authors propose a new control strategy in which the rudder system of the towed vessel is activated to provide its maneuverability. Based on the leader-follower system configuration, a nonlinear mathematical model is derived and a back-stepping control is designed. By simulation and experiment results with a comparison study, the usefulness and effectiveness of the proposed strategy are validated.

초기설계시(初期設計時) 선박(船舶)의 조종성능(操縱性能) 추정(推定)에 관한 연구 (Prediction of Maneuverability of a Ship in the Initial Design Stage)

  • 이승건;김수정
    • 대한조선학회논문집
    • /
    • 제32권4호
    • /
    • pp.19-26
    • /
    • 1995
  • 선박의 조종성능 평가는 유체역학적으로 매우 복잡한 문제로, 정화한 조종성능 평가를 위해서는 구속모형시험에 의한 유체력의 계측과 수학모델에 의한 수치시뮬레이션, 또는 자유항주시험 등이 필수적이다. 한편 최근 IMO의 "조종성 기준"이 발효되고 나서 각 조선현장에서는 이 기준에 부합되는 우수한 조종성능을 갖춘 선박을 설계초기 단계에서부터 계획할 필요성을 느끼게 되었다. 그러나, 초기설계단계에는 아직 선도가 정해지지 않아, 모형선을 만들수 없고, 따라서 선박의 주요목(예를 들어 L, B, d, $C_b$, Trim $\cdot\;cdot\;cdot$) 및 프로펠러 제원, 타(舵)형상과 같은 극히 제한된 자료를 입력(入力)으로 하여 조종성능을 어느정도 평가할 수 있어야 한다. 본 논문은 이러한 관점에서, 종래의 각종 구속모형시험 결과를 종합하고, 제안된 경험식등을 이용하여 선박의 조종성능을 추정하는 전산 프로그램을 개발하였다.

  • PDF

Development of a safe operation capability chart as the design basis of a rudder area

  • You, Youngjun;Kim, Sewon;Kim, Woojin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.529-544
    • /
    • 2018
  • Ship owners now demand a new design approach for the rudder that considers detailed design information such as maneuverability and environmental loads etc. on a quantified basis. In this paper, we developed the concept of a safe operation capability chart for the design of a rudder area. The chart can be used as the basis of design considering the maneuverability and environmental loads. To confirm the applicability of the safe operation capability chart for use as the basis of design, four different rudders are assumed in this work. First, it is determined whether or not it is appropriate to design a rudder by applying a conventional design approach based on IMO maneuvering tests. The proposed concept is reviewed for use as the basis of the design by investigating the effect of rudder area on capability charts that are plotted according to the rudder under various environmental conditions.