• 제목/요약/키워드: Malicious websites

검색결과 21건 처리시간 0.021초

Automated Link Tracing for Classification of Malicious Websites in Malware Distribution Networks

  • Choi, Sang-Yong;Lim, Chang Gyoon;Kim, Yong-Min
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.100-115
    • /
    • 2019
  • Malicious code distribution on the Internet is one of the most critical Internet-based threats and distribution technology has evolved to bypass detection systems. As a new defense against the detection bypass technology of malicious attackers, this study proposes the automated tracing of malicious websites in a malware distribution network (MDN). The proposed technology extracts automated links and classifies websites into malicious and normal websites based on link structure. Even if attackers use a new distribution technology, website classification is possible as long as the connections are established through automated links. The use of a real web-browser and proxy server enables an adequate response to attackers' perception of analysis environments and evasion technology and prevents analysis environments from being infected by malicious code. The validity and accuracy of the proposed method for classification are verified using 20,000 links, 10,000 each from normal and malicious websites.

WhiteList 기반의 악성코드 행위분석을 통한 악성코드 은닉 웹사이트 탐지 방안 연구 (Research on Malicious code hidden website detection method through WhiteList-based Malicious code Behavior Analysis)

  • 하정우;김휘강;임종인
    • 정보보호학회논문지
    • /
    • 제21권4호
    • /
    • pp.61-75
    • /
    • 2011
  • 최근 DDoS공격용 좀비, 기업정보 및 개인정보 절취 등 각종 사이버 테러 및 금전적 이윤 획득의 목적으로 웹사이트를 해킹, 악성코드를 은닉함으로써 웹사이트 접속PC를 악성코드에 감염시키는 공격이 지속적으로 증가하고 있으며 은닉기술 및 회피기술 또한 지능화 전문화되고 있는 실정이다. 악성코드가 은닉된 웹사이트를 탐지하기 위한 현존기술은 BlackList 기반 패턴매칭 방식으로 공격자가 악성코드의 문자열 변경 또는 악성코드를 변경할 경우 탐지가 불가능하여 많은 접속자가 악성코드 감염에 노출될 수 밖에 없는 한계점이 존재한다. 본 논문에서는 기존 패턴매칭 방식의 한계점을 극복하기 위한 방안으로 WhiteList 기반의 악성코드 프로세스 행위분석 탐지기술을 제시하였다. 제안방식의 실험 결과 현존기술인 악성코드 스트링을 비교하는 패턴매칭의 MC-Finder는 0.8%, 패턴매칭과 행위분석을 동시에 적용하고 있는 구글은 4.9%, McAfee는 1.5%임에 비해 WhiteList 기반의 악성코드 프로세스 행위분석 기술은 10.8%의 탐지율을 보였으며, 이로써 제안방식이 악성코드 설치를 위해 악용되는 웹 사이트 탐지에 더욱 효과적이라는 것을 증명할 수 있었다.

악성코드 은닉사이트의 분산적, 동적 탐지를 통한 감염피해 최소화 방안 연구 (A Study on Minimizing Infection of Web-based Malware through Distributed & Dynamic Detection Method of Malicious Websites)

  • 신화수;문종섭
    • 정보보호학회논문지
    • /
    • 제21권3호
    • /
    • pp.89-100
    • /
    • 2011
  • 최근 웹 사이트를 통해 유포되는 웹 기반 악성코드가 심각한 보안이슈로 대두되고 있다. 기존 웹 페이지 크롤링(Crawling) 기반의 중앙 집중식 탐지기법은, 크롤링 수준을 웹 사이트의 하위링크까지 낮출 경우 탐지에 소요되는 비용(시간, 시스템)이 기하급수적으로 증가하는 문제를 가지고 있다. 본 논문에서는 웹 브라우저 이용자가 악성코드 은닉 스크립트가 포함된 웹 페이지에 접속할 경우 이를 동적으로 탐지하여 안전하게 브라우징 해줌으로써, 감염 피해를 예방할 수 있는 웹 브라우저 기반의 탐지도구들 제시하고, 이 도구를 적용한 분산된 웹 브라우저 이용자가 모두 악성코드 은닉 웹 페이지 탐지에 참여하고, 탐지결과를 피드백 함으로써, 웹 사이트의 하부 링크까지 분산적, 동적으로 탐지하고 대응할 수 있는 모델을 제안한다.

악성 스크립트 패턴 분석을 통한 악성코드 탐지 기법 (A Malware Detection Method using Analysis of Malicious Script Patterns)

  • 이용준;이창범
    • 한국산학기술학회논문지
    • /
    • 제20권7호
    • /
    • pp.613-621
    • /
    • 2019
  • 최근 IoT, 클라우드 컴퓨팅 기술이 발전하면서 IoT 디바이스를 감염시키는 악성코드와 클라우드 서버에 랜섬웨어를 유포하는 신종 악성코드가 등장하여 보안 위협이 증가하고 있다. 본 연구에서는 기존의 시그니처 기반의 탐지 방식과 행위기반의 탐지 방식의 단점을 보완할 수 있도록 난독화된 스크립트 패턴을 분석하여 점검하는 탐지 기법을 제안한다. 제안하는 탐지 기법은 웹사이트 통해 유포되는 악성 스크립트 유형을 분석하여 유포패턴을 도출한 후, 도출된 유포패턴을 등록하여 점검함으로써 기존의 탐지룰 기반의 탐지속도를 유지하면서도 제로데이 공격에 대한 탐지가 가능한 악성 스크립트 패턴분석 기반의 악성코드 탐지 기법이다. 제안한 기법의 성능을 검증하기 위해 프로토타입 시스템을 개발하였으며, 이를 통해 총 390개의 악성 웹사이트를 수집, 분석에 의해 도출된 10개의 주요 악성 스크립트 유포패턴을 실험한 결과, 전체 항목 평균 약 86%의 높은 탐지율을 보였으며, 기존의 탐지룰 기반의 점검속도를 유지하면서도 제로데이 공격까지도 탐지가 가능한 것을 실험으로 입증하였다.

CNN 기반 MS Office 악성 문서 탐지 (MS Office Malicious Document Detection Based on CNN)

  • 박현수;강아름
    • 정보보호학회논문지
    • /
    • 제32권2호
    • /
    • pp.439-446
    • /
    • 2022
  • 웹사이트나 메일의 첨부 파일을 이용해 문서형 악성코드의 유포가 활발하게 이루어지고 있다. 문서형 악성코드는 실행 파일이 직접 실행되는 것이 아니므로 보안 프로그램의 우회가 비교적 쉽다. 따라서 문서형 악성코드는 사전에 탐지하고 예방해야 한다. 이를 탐지하기 위해 문서의 구조를 파악하고 악성으로 의심되는 키워드를 선정하였다. 문서 내의 스트림 데이터를 아스키코드값으로 변환하여 데이터셋을 만들었다. CNN 알고리즘을 이용하여 문서의 스트림 데이터 내에 존재하는 악성 키워드의 위치를 확인하고 인접 정보를 활용하여 이를 악성으로 분류했다. 파일 내의 스트림 단위로 악성코드를 탐지한 결과 0.97의 정확도를 보였고, 파일 단위로 악성코드를 탐지한 결과 0.92의 정확도를 보였다.

원격코드검증을 통한 웹컨텐츠의 악성스크립트 탐지 (Detecting Malicious Scripts in Web Contents through Remote Code Verification)

  • 최재영;김성기;이혁준;민병준
    • 정보처리학회논문지C
    • /
    • 제19C권1호
    • /
    • pp.47-54
    • /
    • 2012
  • 최근 웹사이트는 매쉬업, 소셜 서비스 등으로 다양한 출처의 리소스를 상호 참조하는 형태로 변화하면서 해킹 시도도 사이트를 직접 공격하기보다 서비스 주체와 연계 서비스, 클라이언트가 상호 작용하는 접점에 악성스크립트를 삽입하는 공격이 증가하고 있다. 본 논문에서는 웹사이트 이용 시 신뢰관계에 있는 여러 출처로부터 다운받은 웹컨텐츠의 HTML 코드와 자바스크립트 코드가 클라이언트 브라우저에서 구동 시 삽입된 악성스크립트를 원격의 검증시스템으로부터 탐지하는 모델을 제안한다. 서비스 주체의 구현코드 정보를 활용하여 요청 출처에 따라 검증 항목을 분류하고 웹컨텐츠의 검증 요소를 추출하여 검증 평가결과를 화이트, 그레이, 블랙 리스트로 데이터베이스에 저장하였다. 실험평가를 통해 제안한 시스템이 악성스크립트를 효율적으로 탐지하여 클라이언트의 보안이 향상됨을 확인하였다.

악성코드 유포 사이트 특성 분석 및 대응방안 연구 (A Study on Characteristic Analysis and Countermeasure of Malicious Web Site)

  • 김홍석;김인석
    • 정보보호학회논문지
    • /
    • 제29권1호
    • /
    • pp.93-103
    • /
    • 2019
  • 최근 드라이브 바이 다운로드 공격 기반의 웹사이트를 통한 랜섬웨어 악성코드 유포로 인해 웹사이트 서비스 마비, 일반 이용자 PC 파일 손상 등의 피해가 발생하고 있다. 따라서 악성코드 경유지 및 유포지 사이트의 현황과 추이 파악을 통해 악성코드 유포의 공격 대상 웹사이트 업종, 유포 시간, 악용되는 어플리케이션 종류, 유포되는 악성 코드 유형에 대한 특성을 분석하는 것은 공격자의 공격활동을 예측하고 대응이 가능하다는 점에서 의미가 크다. 본 논문에서는 국내 343만개의 웹사이트를 대상으로 악성코드 유포여부를 점검하여 탐지된 악성코드 경유지 사이트, 익스플로잇 사이트, 악성코드 유포지 사이트별로 어떠한 특징들이 나타나는지를 도출하고, 이에 대한 대응방안을 고찰하고자 한다.

LoGos: Internet-Explorer-Based Malicious Webpage Detection

  • Kim, Sungjin;Kim, Sungkyu;Kim, Dohoon
    • ETRI Journal
    • /
    • 제39권3호
    • /
    • pp.406-416
    • /
    • 2017
  • Malware propagated via the World Wide Web is one of the most dangerous tools in the realm of cyber-attacks. Its methodologies are effective, relatively easy to use, and are developing constantly in an unexpected manner. As a result, rapidly detecting malware propagation websites from a myriad of webpages is a difficult task. In this paper, we present LoGos, an automated high-interaction dynamic analyzer optimized for a browser-based Windows virtual machine environment. LoGos utilizes Internet Explorer injection and API hooks, and scrutinizes malicious behaviors such as new network connections, unused open ports, registry modifications, and file creation. Based on the obtained results, LoGos can determine the maliciousness level. This model forms a very lightweight system. Thus, it is approximately 10 to 18 times faster than systems proposed in previous work. In addition, it provides high detection rates that are equal to those of state-of-the-art tools. LoGos is a closed tool that can detect an extensive array of malicious webpages. We prove the efficiency and effectiveness of the tool by analyzing almost 0.36 M domains and 3.2 M webpages on a daily basis.

Phishing Attack Detection Using Deep Learning

  • Alzahrani, Sabah M.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.213-218
    • /
    • 2021
  • This paper proposes a technique for detecting a significant threat that attempts to get sensitive and confidential information such as usernames, passwords, credit card information, and more to target an individual or organization. By definition, a phishing attack happens when malicious people pose as trusted entities to fraudulently obtain user data. Phishing is classified as a type of social engineering attack. For a phishing attack to happen, a victim must be convinced to open an email or a direct message [1]. The email or direct message will contain a link that the victim will be required to click on. The aim of the attack is usually to install malicious software or to freeze a system. In other instances, the attackers will threaten to reveal sensitive information obtained from the victim. Phishing attacks can have devastating effects on the victim. Sensitive and confidential information can find its way into the hands of malicious people. Another devastating effect of phishing attacks is identity theft [1]. Attackers may impersonate the victim to make unauthorized purchases. Victims also complain of loss of funds when attackers access their credit card information. The proposed method has two major subsystems: (1) Data collection: different websites have been collected as a big data corresponding to normal and phishing dataset, and (2) distributed detection system: different artificial algorithms are used: a neural network algorithm and machine learning. The Amazon cloud was used for running the cluster with different cores of machines. The experiment results of the proposed system achieved very good accuracy and detection rate as well.

Mitigation of Phishing URL Attack in IoT using H-ANN with H-FFGWO Algorithm

  • Gopal S. B;Poongodi C
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1916-1934
    • /
    • 2023
  • The phishing attack is a malicious emerging threat on the internet where the hackers try to access the user credentials such as login information or Internet banking details through pirated websites. Using that information, they get into the original website and try to modify or steal the information. The problem with traditional defense systems like firewalls is that they can only stop certain types of attacks because they rely on a fixed set of principles to do so. As a result, the model needs a client-side defense mechanism that can learn potential attack vectors to detect and prevent not only the known but also unknown types of assault. Feature selection plays a key role in machine learning by selecting only the required features by eliminating the irrelevant ones from the real-time dataset. The proposed model uses Hyperparameter Optimized Artificial Neural Networks (H-ANN) combined with a Hybrid Firefly and Grey Wolf Optimization algorithm (H-FFGWO) to detect and block phishing websites in Internet of Things(IoT) Applications. In this paper, the H-FFGWO is used for the feature selection from phishing datasets ISCX-URL, Open Phish, UCI machine-learning repository, Mendeley website dataset and Phish tank. The results showed that the proposed model had an accuracy of 98.07%, a recall of 98.04%, a precision of 98.43%, and an F1-Score of 98.24%.