• 제목/요약/키워드: Malicious user detection

검색결과 76건 처리시간 0.024초

안드로이드 로깅 시스템을 이용한 DDoS 공격 애플리케이션 탐지 기법 (DDoS Attack Application Detection Method with Android Logging System)

  • 최슬기;홍민;곽진
    • 정보보호학회논문지
    • /
    • 제24권6호
    • /
    • pp.1215-1224
    • /
    • 2014
  • 현재까지는 스마트폰에 저장된 사용자의 개인정보를 유출시키고, 유출된 개인정보를 악용하기 위한 악성 애플리케이션을 탐지하고, 이러한 악성 애플리케이션으로부터 사용자의 데이터를 보호하기 위한 다양한 연구가 진행되었다. 하지만, 최근에는 스마트폰을 공격 대상이 아닌 DDoS와 같은 2차적인 공격을 수행하기 위한 새로운 공격 도구로 사용하기 위한 악성 애플리케이션이 유포되고 있다. 따라서 본 논문에서는 안드로이드 로깅 시스템을 이용하여 단말기 내부에 설치된 DDoS 공격 애플리케이션을 탐지하는 기법에 대하여 제안한다.

악성코드 은닉사이트의 분산적, 동적 탐지를 통한 감염피해 최소화 방안 연구 (A Study on Minimizing Infection of Web-based Malware through Distributed & Dynamic Detection Method of Malicious Websites)

  • 신화수;문종섭
    • 정보보호학회논문지
    • /
    • 제21권3호
    • /
    • pp.89-100
    • /
    • 2011
  • 최근 웹 사이트를 통해 유포되는 웹 기반 악성코드가 심각한 보안이슈로 대두되고 있다. 기존 웹 페이지 크롤링(Crawling) 기반의 중앙 집중식 탐지기법은, 크롤링 수준을 웹 사이트의 하위링크까지 낮출 경우 탐지에 소요되는 비용(시간, 시스템)이 기하급수적으로 증가하는 문제를 가지고 있다. 본 논문에서는 웹 브라우저 이용자가 악성코드 은닉 스크립트가 포함된 웹 페이지에 접속할 경우 이를 동적으로 탐지하여 안전하게 브라우징 해줌으로써, 감염 피해를 예방할 수 있는 웹 브라우저 기반의 탐지도구들 제시하고, 이 도구를 적용한 분산된 웹 브라우저 이용자가 모두 악성코드 은닉 웹 페이지 탐지에 참여하고, 탐지결과를 피드백 함으로써, 웹 사이트의 하부 링크까지 분산적, 동적으로 탐지하고 대응할 수 있는 모델을 제안한다.

카테고리와 권한을 이용한 안드로이드 악성 앱 탐지 (The Detection of Android Malicious Apps Using Categories and Permissions)

  • 박종찬;백남균
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.907-913
    • /
    • 2022
  • 전 세계 스마트폰 이용자 중 약 70%가 안드로이드 운영체제 기반 스마트폰을 사용하고 있으며 이러한 안드로이드 플랫폼을 표적으로 한 악성 앱이 지속적으로 증가하고 있다. 구글은 증가하는 안드로이드 대상 악성코드에 대응하기 위해 'Google Play Protect'를 제공하여 악성 앱이 스마트폰에 설치되는 것을 방지하고 있으나, 아직도 많은 악성 앱들이 정상 앱처럼 위장하여 구글 플레이스토어에 등록되어 선량한 일반 사용자의 스마트폰을 위협하고 있다. 하지만 일반 사용자가 악성 앱을 점검하기에는 상당한 전문성이 필요하기에 대부분 사용자는 안티바이러스 프로그램에 의존하여 악성 앱을 탐지하고 있다. 이에 본 논문에서는 앱에서 쉽게 확인이 가능한 카테고리와 권한만을 활용하여 앱의 불필요한 악성 권한을 분류하고 분류한 권한을 통해 악성 앱을 쉽게 검출할 수 있는 방법을 제안한다. 제안된 방법은 '상용 악성 앱 검출 프로그램'과 미탐율·오탐율 측면에서 비교 분석하여 성능 수준을 제시하고 있다.

Phishing Attack Detection Using Deep Learning

  • Alzahrani, Sabah M.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.213-218
    • /
    • 2021
  • This paper proposes a technique for detecting a significant threat that attempts to get sensitive and confidential information such as usernames, passwords, credit card information, and more to target an individual or organization. By definition, a phishing attack happens when malicious people pose as trusted entities to fraudulently obtain user data. Phishing is classified as a type of social engineering attack. For a phishing attack to happen, a victim must be convinced to open an email or a direct message [1]. The email or direct message will contain a link that the victim will be required to click on. The aim of the attack is usually to install malicious software or to freeze a system. In other instances, the attackers will threaten to reveal sensitive information obtained from the victim. Phishing attacks can have devastating effects on the victim. Sensitive and confidential information can find its way into the hands of malicious people. Another devastating effect of phishing attacks is identity theft [1]. Attackers may impersonate the victim to make unauthorized purchases. Victims also complain of loss of funds when attackers access their credit card information. The proposed method has two major subsystems: (1) Data collection: different websites have been collected as a big data corresponding to normal and phishing dataset, and (2) distributed detection system: different artificial algorithms are used: a neural network algorithm and machine learning. The Amazon cloud was used for running the cluster with different cores of machines. The experiment results of the proposed system achieved very good accuracy and detection rate as well.

Malicious User Suppression Based on Kullback-Leibler Divergence for Cognitive Radio

  • Van, Hiep-Vu;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권6호
    • /
    • pp.1133-1146
    • /
    • 2011
  • Cognitive radio (CR) is considered one of the most promising next-generation communication systems; it has the ability to sense and make use of vacant channels that are unused by licensed users. Reliable detection of the licensed users' signals is an essential element for a CR network. Cooperative spectrum sensing (CSS) is able to offer better sensing performance as compared to individual sensing. The presence of malicious users who falsify sensing data can severely degrade the sensing performance of the CSS scheme. In this paper, we investigate a secure CSS scheme, based on the Kullback-Leibler Divergence (KL-divergence) theory, in order to identify malicious users and mitigate their harmful effect on the sensing performance of CSS in a CR network. The simulation results prove the effectiveness of the proposed scheme.

테인트드로이드를 이용한 스미싱 탐지 기법 연구 (A Study on SMiShing Detection Technique using TaintDroid)

  • 조지호;신지용;이극
    • 융합보안논문지
    • /
    • 제15권1호
    • /
    • pp.3-9
    • /
    • 2015
  • 본 논문에서는 테인트드로이드(TaintDroid)를 이용한 스미싱 탐지 기법을 제안한다. 제안하는 시스템은 스마트폰 사용자가 스미싱으로 의심되는 URL이 포함된 문자메시지를 수신 하였을 때 테인트드로이드 서버로 URL을 전송하여 테인트드로이드 서버의 가상디바이스에 해당 애플리케이션을 설치하여 악성행위를 탐지한다. 실제 스마트폰에서 스미싱으로 의심되어 설치하지 못하였던 애플리케이션은 가상 디바이스를 통하여 테스트하고 악성행위를 하는 애플리케이션인지의 여부를 판별한다. 본 논문에서 제안한 테인트드로이드를 이용한 스미싱 탐지 기법은 새로운 형태의 스미싱 문자메시지의 탐지가 가능하며 사용자가 분석결과를 통해 어떤 애플리케이션인지의 확인이 가능하다.

악성 URL 탐지 및 필터링 시스템 구현 (An Implementation of System for Detecting and Filtering Malicious URLs)

  • 장혜영;김민재;김동진;이진영;김홍근;조성제
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권4호
    • /
    • pp.405-414
    • /
    • 2010
  • 2008년도 SecruityFocus 자료에 따르면 마이크로소프트사의 인터넷 익스플로러를 통한 클라이언트 측 공격(client-side attack)이 50%이상 증가하였다. 본 논문에서는 가상머신 환경에서 능동적으로 웹 페이지를 방문하여 행위 기반(즉, 상태변경 기반)으로 악성 URL을 분석하여 탐지하고, 블랙리스트 기반으로 악성 URL을 필터링하는 시스템을 구현하였다. 이를 위해, 우선 크롤링 시스템을 구축하여 대상 URL을 효율적으로 수집하였다. 특정 서버에서 구동되는 악성 URL 탐지 시스템은, 수집한 웹페이지를 직접 방문하여 머신의 상태 변경을 관찰 분석하고 악성 여부를 판단한 후, 악성 URL에 대한 블랙리스트를 생성 관리한다. 웹 클라이언트 머신에서 구동되는 악성 URL 필터링 시스템은 블랙리스트 기반으로 악성 URL을 필터링한다. 또한, URL의 분석 시에 메시지 박스를 자동으로 처리함으로써, 성능을 향상시켰다. 실험 결과, 게임 사이트가 다른 사이트에 비해 악성비율이 약 3배 많았으며, 파일생성 및 레지스트리 키 변경 공격이 많음을 확인할 수 있었다.

SSL VPN기반의 행위.순서패턴을 활용한 접근제어에 관한 연구 (A Study on Access Control Through SSL VPN-Based Behavioral and Sequential Patterns)

  • 장은겸;조민희;박영신
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권11호
    • /
    • pp.125-136
    • /
    • 2013
  • 본 논문에서는 SSL VPN을 기반으로 사용자 인증과 사용자 단말의 무결성을 검증할 수 있는 네트워크 접근제어 기술을 제안한다. 사용자 단말이 VPN을 이용해 내부 네트워크에 접속할 때 사용자 인증과 사용자 단말의 보안패치, 바이러스 백신 등의 보안 서비스를 확인하는 안전성 검사를 수행한다. 그리고 변종의 악성코드를 탐지하기 위해 사용자 단말의 윈도우 API 정보를 통한 행위패턴을 바탕으로 악성코드를 탐지하고, 탐지의 신뢰도를 높이기 위해 순서패턴의 유사도를 비교하여 변종의 악성코드를 탐지하여 외부의 보안 위협으로부터 시스템을 보호한다.

Registry 분석을 통한 악성코드 감염여부 탐지 방법 연구 (Research on Registry Analysis based Malware Detection Method)

  • 홍성혁
    • 한국융합학회논문지
    • /
    • 제8권5호
    • /
    • pp.37-43
    • /
    • 2017
  • 윈도우 운영체제(Operating System)에서 OS와 어플리케이션 프로그램 운영에 필요한 정보를 저장하기 위해 개발된 계층형 DB인 registry는 부팅에서 사용자 로그인, 응용 서비스 실행, 어플리케이션 프로그램 실행, 사용자 행위 등 모든 활동에 관여하기 때문에, registry를 분석을 통한 디지털증거획득이 많이 사용되고 있다. 최근 사용자가 인식하지 못하는 방법으로 악성코드가 시스템에 침투하여 귀중한 기술정보를 유출하거나 도용하여 금전적 피해가 많이 발생하고 있다. 따라서 본 연구에서는 고가의 디지털포렌식 프로그램 사용 없이 셰어웨어 어플리케이션을 이용하여 악성코드를 탐지하는 방법을 제시하여 해킹의 피해를 분석하고 동일한 피해를 예방하기 위해 본 연구를 진행하였으며, 악성코드를 탐지하고 분석하기 위해 고가의 상용프로그램을 사용하지 않고도 정확히 분석할 수 있기 때문에 학문적 기여도는 클 것으로 기대한다.

Improving the Cyber Security over Banking Sector by Detecting the Malicious Attacks Using the Wrapper Stepwise Resnet Classifier

  • Damodharan Kuttiyappan;Rajasekar, V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1657-1673
    • /
    • 2023
  • With the advancement of information technology, criminals employ multiple cyberspaces to promote cybercrime. To combat cybercrime and cyber dangers, banks and financial institutions use artificial intelligence (AI). AI technologies assist the banking sector to develop and grow in many ways. Transparency and explanation of AI's ability are required to preserve trust. Deep learning protects client behavior and interest data. Deep learning techniques may anticipate cyber-attack behavior, allowing for secure banking transactions. This proposed approach is based on a user-centric design that safeguards people's private data over banking. Here, initially, the attack data can be generated over banking transactions. Routing is done for the configuration of the nodes. Then, the obtained data can be preprocessed for removing the errors. Followed by hierarchical network feature extraction can be used to identify the abnormal features related to the attack. Finally, the user data can be protected and the malicious attack in the transmission route can be identified by using the Wrapper stepwise ResNet classifier. The proposed work outperforms other techniques in terms of attack detection and accuracy, and the findings are depicted in the graphical format by employing the Python tool.