• Title/Summary/Keyword: Malicious attack

Search Result 424, Processing Time 0.022 seconds

Android based Mobile Device Rooting Attack Detection and Response Mechanism using Events Extracted from Daemon Processes (안드로이드 기반 모바일 단말 루팅 공격에 대한 이벤트 추출 기반 대응 기법)

  • Lee, Hyung-Woo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.3
    • /
    • pp.479-490
    • /
    • 2013
  • Recently, the number of attacks by malicious application has significantly increased, targeting Android-platform mobile terminal such as Samsung Galaxy Note and Galaxy Tab 10.1. The malicious application can be distributed to currently used mobile devices through open market masquerading as an normal application. An attacker inserts malicious code into an application, which might threaten privacy by rooting attack. Once the rooting attack is successful, malicious code can collect and steal private data stored in mobile terminal, for example, SMS messages, contacts list, and public key certificate for banking. To protect the private information from the malicious attack, malicious code detection, rooting attack detection and countermeasure method are required. To meet this end, this paper investigates rooting attack mechanism for Android-platform mobile terminal. Based on that, this paper proposes countermeasure system that enables to extract and collect events related to attacks occurring from mobile terminal, which contributes to active protection from malicious attacks.

Detecting Anomalies, Sabotage, and Malicious Acts in a Cyber-physical System Using Fractal Dimension Based on Higuchi's Algorithm

  • Marwan Albahar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.69-78
    • /
    • 2023
  • With the global rise of digital data, the uncontrolled quantity of data is susceptible to cyber warfare or cyber attacks. Therefore, it is necessary to improve cyber security systems. This research studies the behavior of malicious acts and uses Higuchi Fractal Dimension (HFD), which is a non-linear mathematical method to examine the intricacy of the behavior of these malicious acts and anomalies within the cyber physical system. The HFD algorithm was tested successfully using synthetic time series network data and validated on real-time network data, producing accurate results. It was found that the highest fractal dimension value was computed from the DoS attack time series data. Furthermore, the difference in the HFD values between the DoS attack data and the normal traffic data was the highest. The malicious network data and the non-malicious network data were successfully classified using the Receiver Operating Characteristics (ROC) method in conjunction with a scaling stationary index that helps to boost the ROC technique in classifying normal and malicious traffic. Hence, the suggested methodology may be utilized to rapidly detect the existence of abnormalities in traffic with the aim of further using other methods of cyber-attack detection.

Semi-supervised based Unknown Attack Detection in EDR Environment

  • Hwang, Chanwoong;Kim, Doyeon;Lee, Taejin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4909-4926
    • /
    • 2020
  • Cyberattacks penetrate the server and perform various malicious acts such as stealing confidential information, destroying systems, and exposing personal information. To achieve this, attackers perform various malicious actions by infecting endpoints and accessing the internal network. However, the current countermeasures are only anti-viruses that operate in a signature or pattern manner, allowing initial unknown attacks. Endpoint Detection and Response (EDR) technology is focused on providing visibility, and strong countermeasures are lacking. If you fail to respond to the initial attack, it is difficult to respond additionally because malicious behavior like Advanced Persistent Threat (APT) attack does not occur immediately, but occurs over a long period of time. In this paper, we propose a technique that detects an unknown attack using an event log without prior knowledge, although the initial response failed with anti-virus. The proposed technology uses a combination of AutoEncoder and 1D CNN (1-Dimention Convolutional Neural Network) based on semi-supervised learning. The experiment trained a dataset collected over a month in a real-world commercial endpoint environment, and tested the data collected over the next month. As a result of the experiment, 37 unknown attacks were detected in the event log collected for one month in the actual commercial endpoint environment, and 26 of them were verified as malicious through VirusTotal (VT). In the future, it is expected that the proposed model will be applied to EDR technology to form a secure endpoint environment and reduce time and labor costs to effectively detect unknown attacks.

A Study on Characteristic Analysis and Countermeasure of Malicious Web Site (악성코드 유포 사이트 특성 분석 및 대응방안 연구)

  • Kim, Hong-seok;Kim, In-seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.93-103
    • /
    • 2019
  • Recently, malicious code distribution of ransomware through a web site based on a drive-by-download attack has resulted in service disruptions to the web site and damage to PC files for end users. Therefore, analyzing the characteristics of the target web site industry, distribution time, application type, and type of malicious code that is being exploited can predict and respond to the attacker's attack activities by analyzing the status and trend of malicious code sites. In this paper, we will examine the distribution of malicious codes to 3.43 million websites in Korea to draw out the characteristics of each detected landing site, exploit site, and distribution site, and discuss countermeasures.

Research on countermeasures against malicious file upload attacks (악성 파일 업로드 공격 대응방안 연구)

  • Kim, Taekyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.53-59
    • /
    • 2020
  • Malicious file upload attacks mean that the attacker to upload or transfer files of dangerous types that can be automatically processed within the web server's environment. Uploaded file content can include exploits, malware and malicious scripts. An attacker can user malicious content to manipulate the application behavior. As a method of detecting a malicious file upload attack, it is generally used to find a file type by detecting a file extension or a signature of the file. However, this type of file type detection has the disadvantage that it can not detect files that are not encoded with a specific program, such as PHP files. Therefore, in this paper, research was conducted on how to detect and block any program by using essential commands or variable names used in the corresponding program when writing a specific program. The performance evaluation results show that it detected specific files effectively using the suggested method.

A Study of Countermeasures for Advanced Persistent Threats attacks by malicious code (악성코드의 유입경로 및 지능형 지속 공격에 대한 대응 방안)

  • Gu, MiSug;Li, YongZhen
    • Journal of Convergence Society for SMB
    • /
    • v.5 no.4
    • /
    • pp.37-42
    • /
    • 2015
  • Due to the advance of ICT, a variety of attacks have been developing and active. Recently, APT attacks using malicious codes have frequently occurred. Advanced Persistent Threat means that a hacker makes different security threats to attack a certain network of a company or an organization. Exploiting malicious codes or weaknesses, the hacker occupies an insider's PC of the company or the organization and accesses a server or a database through the PC to collect secrets or to destroy them. The paper suggested a countermeasure to cope with APT attacks through an APT attack process. It sought a countermeasure to delay the time to attack taken by the hacker and suggested the countermeasure able to detect and remove APT attacks.

  • PDF

Proposal of Process Hollowing Attack Detection Using Process Virtual Memory Data Similarity (프로세스 가상 메모리 데이터 유사성을 이용한 프로세스 할로윙 공격 탐지)

  • Lim, Su Min;Im, Eul Gyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.2
    • /
    • pp.431-438
    • /
    • 2019
  • Fileless malware uses memory injection attacks to hide traces of payloads to perform malicious works. During the memory injection attack, an attack named "process hollowing" is a method of creating paused benign process like system processes. And then injecting a malicious payload into the benign process allows malicious behavior by pretending to be a normal process. In this paper, we propose a method to detect the memory injection regardless of whether or not the malicious action is actually performed when a process hollowing attack occurs. The replication process having same execution condition as the process of suspending the memory injection is executed, the data set belonging to each process virtual memory area is compared using the fuzzy hash, and the similarity is calculated.

Optimal thresholds of algorithm and expansion of Application-layer attack detection block ALAB in ALADDIN (ALADDIN의 어플리케이션 계층 공격 탐지 블록 ALAB 알고리즘의 최적 임계값 도출 및 알고리즘 확장)

  • Yoo, Seung-Yeop;Park, Dong-Gue;Oh, Jin-Tae;Jeon, In-Ho
    • The KIPS Transactions:PartC
    • /
    • v.18C no.3
    • /
    • pp.127-134
    • /
    • 2011
  • Malicious botnet has been used for more malicious activities, such as DDoS attacks, sending spam messages, steal personal information, etc. To prevent this, many studies have been preceded. But malicious botnets have evolved and evaded detection systems. In particular, HTTP GET Request attack that exploits the vulnerability of the application layer is used. ALAB of ALADDIN proposed by ETRI is DDoS attack detection system that HTTP GET, Incomplete GET request flooding attack detection algorithm is applied. In this paper, we extend Incomplete GET detection algorithm of ALAB and derive the optimal configuration parameters to verify the validity of the algorithm ALAB by the study of the normal and attack packets.

Throughput and Interference for Cooperative Spectrum Sensing: A Malicious Perspective

  • Gan, Jipeng;Wu, Jun;Zhang, Jia;Chen, Zehao;Chen, Ze
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4224-4243
    • /
    • 2021
  • Cognitive radio (CR) is a feasible intelligent technology and can be used as an effective solution to spectrum scarcity and underutilization. As the key function of CR, cooperative spectrum sensing (CSS) is able to effectively prevent the harmful interference with primary users (PUs) and identify the available spectrum resources by exploiting the spatial diversity of multiple secondary users (SUs). However, the open nature of the cognitive radio networks (CRNs) framework makes CSS face many security threats, such as, the malicious user (MU) launches Byzantine attack to undermine CRNs. For this aim, we make an in-depth analysis of the motive and purpose from the MU's perspective in the interweave CR system, aiming to provide the future guideline for defense strategies. First, we formulate a dynamic Byzantine attack model by analyzing Byzantine behaviors in the process of CSS. On the basis of this, we further make an investigation on the condition of making the fusion center (FC) blind when the fusion rule is unknown for the MU. Moreover, the throughput and interference to the primary network are taken into consideration to evaluate the impact of Byzantine attack on the interweave CR system, and then analyze the optimal strategy of Byzantine attack when the fusion rule is known. Finally, theoretical proofs and simulation results verify the correctness and effectiveness of analyses about the impact of Byzantine attack strategy on the throughput and interference.

Identification of Attack Group using Malware and Packer Detection (악성코드 및 패커 탐지를 이용한 공격 그룹 판별)

  • Moon, Heaeun;Sung, Joonyoung;Lee, Hyunsik;Jang, Gyeongik;Kwak, Kiyong;Woo, Sangtae
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.106-112
    • /
    • 2018
  • Recently, the number of cyber attacks using malicious code has increased. Various types of malicious code detection techniques have been researched for several years as the damage has increased. In recent years, profiling techniques have been used to identify attack groups. This paper focuses on the identification of attack groups using a detection technique that does not involve malicious code detection. The attacker is identified by using a string or a code signature of the malicious code. In addition, the detection rate is increased by adding a technique to confirm the packing file. We use Yara as a detection technique. We have research about RAT (remote access tool) that is mainly used in attack groups. Further, this paper develops a ruleset using malicious code and packer main feature signatures for RAT which is mainly used by the attack groups. It is possible to detect the attacker by detecting RAT based on the newly created ruleset.