
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, Dec. 2020 4909

Copyright ⓒ 2020 KSII

This research was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea

government(MSIT) (No. 2018R1C1B5029849)

http://doi.org/10.3837/tiis.2020.12.016 ISSN : 1976-7277

Semi-supervised based Unknown Attack
Detection in EDR Environment

Chanwoong Hwang1, Doyeon Kim1, and Taejin Lee1*
1 Department of Information Security, Hoseo University

Asan, South Korea

[e-mail: hcw85123@gmail.com, ehdus3342@gmail.com, kinjecs0@gmail.com]
*Corresponding author: Taejin Lee

Received November 19, 2020; accepted November 21, 2020; published December 31, 2020

Abstract

Cyberattacks penetrate the server and perform various malicious acts such as stealing

confidential information, destroying systems, and exposing personal information. To achieve

this, attackers perform various malicious actions by infecting endpoints and accessing the

internal network. However, the current countermeasures are only anti-viruses that operate in a

signature or pattern manner, allowing initial unknown attacks. Endpoint Detection and

Response (EDR) technology is focused on providing visibility, and strong countermeasures

are lacking. If you fail to respond to the initial attack, it is difficult to respond additionally

because malicious behavior like Advanced Persistent Threat (APT) attack does not occur

immediately, but occurs over a long period of time. In this paper, we propose a technique that

detects an unknown attack using an event log without prior knowledge, although the initial

response failed with anti-virus. The proposed technology uses a combination of AutoEncoder

and 1D CNN (1-Dimention Convolutional Neural Network) based on semi-supervised

learning. The experiment trained a dataset collected over a month in a real-world commercial

endpoint environment, and tested the data collected over the next month. As a result of the

experiment, 37 unknown attacks were detected in the event log collected for one month in the

actual commercial endpoint environment, and 26 of them were verified as malicious through

VirusTotal (VT). In the future, it is expected that the proposed model will be applied to EDR

technology to form a secure endpoint environment and reduce time and labor costs to

effectively detect unknown attacks.

Keywords: Endpoint Security, EDR, Unknown Attack Detection, AutoEncoder, 1D CNN

4910 Hwang et al.: Semi-supervised based Unknown Attack Detection in EDR Environment

1. Introduction

Recently, as the popularity of bring your own device (BYOD) and IoT has increased, the

number of individual devices connected to an organization's network is rapidly increasing.

According to the Cisco Annual Internet Report [1], the number of devices connected to the IP

network is expected to be more than three times the world's population by 2023. In 2023, there

will be 3.6 network devices per person, with a total of 293 billion network devices. If the

device is connected to a network, it is considered an endpoint. Fig. 1 shows a sample of what

is considered an endpoint. These are the entry points for threats and malware, so endpoints

like mobile and remote devices are targeted. It attempts to access the internal network through

an endpoint with security flaws or vulnerabilities. Attackers who have access to the internal

network can attempt various malicious actions, such as data loss or corruption.

Fig. 1. Example of Endpoint

Endpoint security started with a traditional signature security solution. It detects changes to

the file system or application that match known patterns and blocks the program from running.

This made the Internet and e-commerce increasingly popular, making malware more and more

frequent, complex, and difficult to detect. In addition, new security technologies are needed as

fileless malware is no longer dependent on signatures. This bypasses existing signature-style

security solutions without creating a file. For example, a malicious Dynamic Link Library

(DLL) is injected into a normal process or a malicious VBScript is inserted into a normal

Microsoft Office document. Moreover, it modifies the registry to attempt additional malicious

behavior. Thus, a combination of machine learning and Artificial Intelligence (AI) can block

unknown attacks from existing knowledge such as firewalls, reputations and heuristics, rather

than traditional security solutions that rely on signatures.

We propose an anomaly detection approach through AutoEncoder and 1D-CNN that reflects

temporal features in endpoint environments. Anomaly detection is not up-to-date and has been

studied for a long time, but it has been highlighted relatively recently with big data. In other

words, anomaly detection aims to find anomaly data in a given dataset. Anomaly detection

approaches are used in a variety of areas, including financial fraud detection, network intrusion

detection, human behavior analysis, and gene expression analysis [2-5]. Anomaly detection

has also been studied in the field of time series data with time characteristics. In time series

data, because a specific point in time is greatly affected by features before and after that point,

it is usually necessary to select the appropriate small window size of time to proceed with the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4911

analysis. Analytical goals are categorized as finding abnormal point of time or patterns of

abnormal change. In a dataset, when one point is judged to be abnormal for the other points,

it is called point anomaly and when one or more data is judged to be abnormal in a particular

data areas, it is called a collective anomaly. In addition, when an object within a dataset is

deemed strange in a particular context, it is called contextual anomaly. It is also classified as

unsupervised learning and supervised learning, depending on whether labels are available for

anomaly in past datasets. Most of the existing log-based detection techniques work by using

network logs to detect and update the database [6]. In recent years, effective research has been

conducted on log analysis based on machine learning or large-scale logs, but it is insufficient

[7-11]. Anomaly detection is different from a model that simply classifies malicious and

normal. Ahmed et al. [12] explained the research challenge that publicly labeled datasets are

not available despite the many techniques available for anomaly detection. Therefore, this

paper proposes a technique to detect unknown attacks without prior knowledge, such as

without a label. Based on semi-supervised learning, data collected for one month from a

commercial endpoint environment is assumed to be normal, and normal data and out-of-

bounds data are detected. It is a model that reflects continuous data in chronological order

occurring at the endpoint. We expect the proposed model to make it easier for endpoints to

recognize previously unseen attack behaviors, reducing the time and labor costs of dealing

with new attacks.

Section 2 describes related studies on data processing that reflects common anomaly

detection and sequences. Section 3 proposes an anomaly detection model at the endpoint.

Section 4 provides anomaly detection results using the proposed model and discusses

operational policies. Finally, Section 5 has a conclusion.

2. Related Work

Research on technology for anomaly detection of data related to ICS and EDR has been

conducted [13, 14]. Alrashdi et al. [15] proposed a network-based IoT Anomaly Detection

System (AD-IoT) using a Random Forest (RF) algorithm among machine learning algorithms.

Attacks were detected by identifying normal traffic and abnormal traffic using False Positive

Rates. Experiments were conducted using the UNSW-NB15 dataset, and Table 1 shows the

accuracy, recall, and F1-score for normal/abnormal traffic prediction using RF. An average

accuracy of about 98% was derived, and recall and F1-Score were also about 98%.

Table 1. Performance of binary classification

Model Predicted Precision Recall F1-Score

RF

Normal 0.99 0.99 0.99

Attack 0.79 0.97 0.86

Avg/total 0.98 0.98 0.98

Kravchik et al. [16] conducted a study to detect cyberattacks on ICS using CNN. SWaT

dataset was used, and the dataset includes 36 various cyberattacks. The experiment was

conducted with a model combining 1D-CNN and Long Short-Term Memory (LSTM) that can

be quickly trained in detecting anomalies of ICS, rather than 2D-CNN, which is frequently

used for image processing. Fig. 2 shows the 1D-CNN model. In the 1D-CNN model,

Convolution-ReLU-Maxpooling was applied to each feature along the time axis. In the model

that combines CNN and LSTM, the data is processed in the convolution layer and then

transmitted to the LSTM layer to predict the value. Table 2 shows the F1-score for each model

4912 Hwang et al.: Semi-supervised based Unknown Attack Detection in EDR Environment

tested in the study. CNN-based model showed higher accuracy when detecting anomaly than

CNN and LSTM combined models. The highest accuracy was obtained when 8 convolutional

layers were arranged, but the CNN composed of 4 layers was also not much different from the

CNN with 8 convolutional layers in accuracy, and progressed much faster in speed.

Fig. 2. 1D-CNN model configuration

Table 2. F1-scores per stage

Network configuration P1 P2 P3 P4 P5 All

4 inception layer,

kernel = 2, 32 filters
0.834 0.626 0.866 0.875 0.714 0.609

8 convolutional layers,

kernel = 2, 32 filters
0.924 0.595 0.918 0.901 0.795 0.775

4 convolutional layers,

kernel = 2, 32 filters
0.89 0.58 0.858 0.907 0.731 0.688

4 convolutional layers + 3 LSTM layers,

kernel = 2, 32 filters
0.857 0.666 0.956 0.909 0.8 0.646

2 convolutional layers,

kernel = 2, 32 filters
0.805 0.472 0.85 0.87 0.656 0.632

3 LSTM layers with state = 256 0.778 0.453 0.787 0.805 0.714 0.626

Kim et al. [17] detects anomalies in the event log using LOF and AutoEncoder among the

anomaly detection techniques and suggests event rules generated through an attack profile.

LOF was calculated based on the k-Nearest Neighbor (kNN) algorithm. The distance value

between the reference point and the test data is converted into a score to determine whether it

is a variant, and the larger the distance value is, the greater the difference from the normal data

is. The AutoEncoder model trains independently, separating network behavior from system

behavior. In addition, by analyzing the anomaly event, the malicious process and the threats

that may occur are detected. Create an attack profile to create a rule that can be detected based

on an attack log. Using the generated rules, users can be alerted when an attack on the endpoint

occurs and it is effective in detecting an attack. Fig. 3 shows the main attack scenario in the

attack profile.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4913

Fig. 3. Main attack scenario in the attack profile

Independent Identically Distribution (IID) data means that random variables are distributed

independently and equally, and Sequential data means that data is generated in a same stream

in sequential order. Time Series means that data is generated from a stream with the same

spacing between successive objects. There are Point anomaly, Contextual anomaly, and

Collective anomaly to detect anomaly, and Deep Anomaly Detection (DAD), which detects

all three types of anomaly. Point anomaly is classified as an anomaly as the distance between

the single instance and the other instance is farther, and is mainly used for credit card fraud

detection. Contextual anomaly detects abnormal signs considering context and is commonly

used in time series data. When anomalous values exist between constant contexts (values),

abnormal signs are judged. Collective anomaly, unlike point anomaly, detects anomaly for

multiple instances rather than a single instance.

Andrade et al. [18] proposed a method for detecting anomaly in sequential data. For

detecting anomaly, three data mining techniques and various algorithms were proposed:

Unsupervised, Semi-supervised, and Supervised. The unsupervised learning is based on

untrained data to detect anomaly and can be grouped into statistics, clustering, distance-based

and density-based techniques. The supervised learning detects anomaly through learning the

neural network. Semi-supervised learning combines a small amount of data with a label and a

large number of data without a label to learn through machine learning. Training data with

label is trained as supervised learning, and training data without label is trained as

unsupervised learning. The anomaly detection using time series data uses a data set performed

at the same time interval among continuously observed data, and generally measures a specific

period. One example is the Symbolic Aggregate Approximation (SAX) algorithm. The SAX

algorithm is an algorithm that reduces dimensions and duplication of time series data, which

has the advantage of using less storage space. However, sliding windows are required as

parameters to increase the accuracy of the algorithm. But, Recursive Ray Acoustics (RRA)

algorithm improves this problem. Unlike the SAX algorithm, it is possible to detect anomaly

without a time limit if there is no need for a sliding window value and only an initial value.

Fig. 4 shows the results of detecting anomaly with the RRA algorithm using an

electrocardiography (EGC) dataset. Of the two, the figure above shows the location of the

abnormal ECG, and the figure below shows the abnormal signs appearing at the location

4914 Hwang et al.: Semi-supervised based Unknown Attack Detection in EDR Environment

shown above using the regular density curve.

Fig. 4. Anomaly discovery in electrocardiography (EGC) dataset

3. Proposed Model

3.1 Overview

We use the feature difference between data that happened in the past and what is happening to

detect anomaly at the endpoint. The larger the difference between normal data and new data

that has not occurred in the past, the more it can be identified as anomalous. This section

proposes an anomaly detection method for six fields collected from endpoints using

AutoEncoder and 1D-CNN. Fig. 5 shows the overall structure of the proposed model. First,

we collect the logs collected from the endpoints in the internal network. Based on the collected

data, it extracts the features for learning the anomaly detection engine. AutoEncoder and 1D-

CNN are applied to calculate anomaly score that represent data differences. Since both models

are deep learning algorithms, they return a loss value indicating the difference from the training

model during the test. The returned loss value is used statistically. Computes the Cumulative

Distribution Function (CDF) value expressed as a number between 0 and 1 using a standard

normal distribution. The CDF value thus generated is used as the final anomaly score.

Anomaly score is used to identify anomaly. These anomaly engines can access suspicious

Internet Protocol addresses (IPs) or detect suspicious processes and classify data by process

for detailed analysis. If anomaly are detected using anomaly score, you can also consider

collective anomaly using flow data collection [19, 20]. Detected abnormal data is verified

through VirusTotal (VT) [21]. VirusTotal shows the number of engines that have determined

that more than 70 antiviruses are malicious. Anomaly data determined to be not malicious can

be quickly excluded from verification through the allowlist policy.

Fig. 5. Overall structure of the proposed model

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4915

3.2 Unknown Attack Detection Engine

3.2.1 Feature Engineering

Only 6 specific fields are used from the collected endpoint log data. Extract 22 features using

6 fields. The 6 fields are categorized into process path, destination IP, event time, process type,

event type, and file type. String data, such as process path fields, must be converted to vectors

in order to train the model. We generate a fixed length vector through feature hashing. Before

the feature hashing, strings are divided into n lengths consecutively using n-gram. Apply the

generated n-gram list to the feature hashing function. The pseudo-code of the feature hashing

function is shown in Fig. 6.

Fig. 6. Feature hashing pseudo-code

After converting the string divided by n-gram into a unique number through the hash

function, the remainder after the modular operation is counted. As a result, a field consisting

of a string can generate a feature vector of a desired size through feature hashing. The

destination IP field also creates a feature vector by feature hashing with a string including dots.

Also, in order to add suspicious local IP address of the accessed IP address, class A and B are

separated and Min-Max Scaling is applied. This is for network behavior only, and the system

behavior is assigned a value of 0 because the value of the destination IP field does not exist.

The event time field was divided into day of the week, weekday, and weekend, and features

were created with different values every 3 hours. Also, the process type, event type, and file

type fields are created with different values of features depending on the corresponding type.

Table 3 shows the processing method and input example of Feature Engineering. There are

four major process types. First, processes such as powershell.exe or cmd.exe are classified as

shell-based processes. Second, processes such as wscript.exe or cscirpt.exe are classified as

script-based processes. Third, processes such as WINWORD.EXE, EXCEL.EXE, and

POWERPNT.EXE are classified as word-based processes. Finally, all other processes are

classified as general processes. File types are classified into PE, script, ZIP, DOC, IMAGE,

and MEDIA. Event types are classified into network, file, module, process, and registry.

Table 3. Example of processing method and input of feature engineering

Used Field Method of Feature Extraction Input Example

Process Path SHA256(2-gram(Process Path)) mod 10
C:\Program Files(x86)\Microsoft

Office\POWERPNT.EXE

Destination IP

SHA256(2-gram(IP)) mod 4 127.0.0.1

MinMaxScaling(IP.A_Class,

IP.B_Class)
127.0

Event Time
If (EventTime = Moday):

feature = 1
1564519160346

4916 Hwang et al.: Semi-supervised based Unknown Attack Detection in EDR Environment

else if (EventTime = Tuesday):

feature = 2

else if (EventTime = Sunday):

feature = 7

If (EventTime =Weekday):

feature = 1

else if (EventTime =Weekend):

feature = 2

If (EventTime = 0~3 time):

feature = 0

else if (EventTime = 3~6 time):

feature = 1

else if (EventTime = 21~24time):

feature = 8

Process Type

If (ProcessType = Normal):

feature = 1

else if (ProcessType = Shell):

feature = 2

else if (ProcessType =Word):

feature = 3

POWERPNT.EXE

Event Type

If (EventType = file):

feature = 1

else if (EventType = module):

feature = 2

else if (EventType = process):

feature = 3

file

File Type

If (FileType = PE):

feature = 1

else if (FileType = Script):

feature = 2

else if (FileType = Zip):

feature = 3

PE

3.2.2 AutoEncoder based unknown attack model

The collected endpoint log data is based on unsupervised learning because no label exists. We

use the AutoEncoder model to calculate anomaly score and detect anomaly. AutoEncoder is a

neural network that simply copies input to output as shown in Fig. 7.

Fig. 7. AutoEncoder configuration

Using these AutoEncoder features, training the normal event log in the past makes use of

the fact that the loss value is large when predicting abnormal data [22, 23]. The parameters

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4917

of the AutoEncoder are learned in the direction of minimizing the loss, and it is judged that

the greater the loss generated by the AutoEncoder model learned during testing, the greater

the anomaly. The loss occurring at this time uses the Mean Squared Error (MSE). The loss

value using the MSE function is shown in equation (1).

 𝛿𝑖 =
1

𝑝
∑ (𝑥𝑖𝑗 − 𝑥𝑖𝑗`)

2𝑝
𝑗=1 (1)

If the input is 𝑥𝑖 and the output is the same 𝑥𝑖` as the input, the loss value 𝛿𝑖 is 𝑖 = 1,⋯ , 𝑛

means the event log. Although the loss value 𝛿𝑖 can be used as an anomaly score, the proposed

model used a statistical an anomaly score. Here, 𝑝 means the number of features, which is the

number of dimensions of input and output. In the experiment configuration, the input layer

and output layer nodes are set to 22, which is the number of features, and the hidden layers are

set in the order of 14, 6, and 14 to undergo the encoding and decoding process. Each layer's

activation function uses the Relu function to return a value less than 0 as 0, and a value greater

than 0 as it is.

3.2.3 1D-CNN based unknown attack detection model

CNN is a kind of deep learning algorithm and was developed for classifying images. In the

process of learning features, it uses 2D inputs representing the pixel and color channels of the

image. CNN utilizes a number of filters that can be used as shared parameters to maintain

spatial information of an image in 2D, effectively extract and learn features from adjacent

images. CNN has the advantage of enabling easier learning with minimal parameters and pre-

processing. The following is the formula of the output value according to the input data of

CNN.

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∑𝑥(𝑎)𝑤(𝑡 − 𝑎). (2)

𝑠(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)𝑛𝑚 (3)

Equation (2) is an output equation of the CNN layer for 1-dimensional input data. 𝑥 is the

input data, 𝑤 is the kernel map and 𝑠(𝑡) is the output layer feature map. Equation (3) is an

output equation of the CNN layer for 2D input data. 𝐼 is the input data, 𝐾 is the kernel map,

and 𝑠(𝑖, 𝑗) is the output layer 2D feature map. CNN works the same way, whether in 1, 2 or 3

dimensions. The difference is the structure of the input data and how the filter, also called the

convolution kernel or feature detector, moves the data. Fig. 8 shows the difference between a

1D-CNN and a 2D-CNN.

(a)

(b)

Fig. 8. Difference between 1D CNN and 2D CNN; (a) 1D CNN feature detector movement method;

(b) 2D CNN feature detector movement method

4918 Hwang et al.: Semi-supervised based Unknown Attack Detection in EDR Environment

We can apply 1D-CNN to sequence data. Extract features from sequence data and map

internal features in the sequence. 1D-CNN is very effective at deriving features from fixed

length segments of the entire dataset, and the location of the features in the segment is not

critical. The 1D-CNN’s final output is a one-dimensional vector because the feature detector

moves in one direction and proceeds with convolution. We applied the 1D-CNN by learning

the event log in sequence over time and predicting the next event log. We set the kernel size

to 5 to reflect the sequence of the top 5 events. The filter size is set to 128 to create the feature

map 1*128 vectors. The output is 22 features of the next event log. We ran a total of 5 epochs,

and since 3 epochs the training evaluation has not changed noticeably.

3.2.4 Statistical Approach for Anomaly Score

We use statistically the loss values tested in the AutoEncoder and 1D-CNN models. Anomaly

detection takes advantage of the fact that when testing normal data against a trained model,

the loss that occurs is large. Statistical analysis of data by calculating z-score and CDF using

loss values. Fig. 9 shows the Example of cumulative distribution function.

Fig. 9. Cumulative distribution function example

CDF indicates the probability that a random variable is less than or equal to a certain value

for a particular probability distribution. Therefore, the CDF is calculated for statistical analysis

using the loss value and the CDF value is used as the anomaly score. If the anomaly score is

greater than the set threshold, it is judged as an anomaly data.

3.3 Analysis and Verification of Anomaly Data

VirusTotal is used to verify whether the anomaly detected data is actually a malicious process.

VirusTotal is a website that provides file scanning for free. The site scans with a variety of

antivirus engines such as FireEye, Kaspersky, Microsoft, Trend Micro, which are well known

to us, and shows the results transparently. VirusTotal determines whether it is

malicious/normal through various anti-virus engines through file upload, URL inspection, and

hash value inspection. It also shows various hash values for files (MD5, SHA-1, SHA-256,

Vhash, etc.) and file information. By verifying the hash value of the anomaly data, it extracts

the malicious/normal status of each of more than 70 anti-virus engines and the name of the

detected malicious code. However, because anti-virus may be misdiagnosed, if more than 5

anti-virus engines determine that the verification result is malicious, it is judged as malicious

data.

4. Unknown Attack Detection Results

4.1 Dataset

The dataset used in the experiment was collected in a real commercial endpoint environment.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4919

Table 4 shows the original dataset. The original dataset consists of 13 fields. Each event log

has a specific process name. The EventType field can distinguish whether the event log is a

network action or a system action. EventSubType is detailed in the EventType field behavior.

In addition, there is a time field where the event log occurred and a corresponding endpoint IP

address field. The RemoteIP field is present only when the EventType is network. This means

the destination IP. The ProPath field means where the process of the event exists. FilePath

means the location of the file, so it does not exist in network behavior. FileType, likewise,

doesn't exist in network behavior, it means the file is a Portable Executable (PE) file or a file

type like a document file. Since the original dataset is data collected in a real commercial

environment, the file name and file path are encrypted. Therefore, other fields such as file

name and file path cannot be used. The dataset collected at the endpoint was provided by G*

Corporation. We used 8,748,392 event logs collected in January 2020 for training, and

9,142,782 event logs collected in February 2020 for testing. Because this data is provided by

the enterprise, the file name and file path are encrypted. Therefore, other fields such as file

name and file path cannot be used. Table 5 shows the dataset configuration used.

Table 4. Original dataset collected from a real commercial endpoint environment

Table 5. Dataset configuration
Data Collection Collection Period Event Count

Training
G*

January 1, 2020 – January 31, 2020 8,748,392

Test February 1, 2020 – February 29, 2020 9,142,782

4.2 Unknown Attack Detection Results

We proposed a model to detect unknown attacks based on Autoencoder and 1D CNN. As a

result of the experiment, all of the proposed models are converted to the number of 0 and 1 by

applying the CDF from the loss value for the test data. We set the threshold to 0.98, and if it

is 0.98 or more, it is judged as a suspicious attack. However, since the detected suspected

attack behavior cannot be judged as malicious, it is verified through VirusTotal to determine

if it is actually malicious. Table 6 shows the proven unknown attacks. It shows the list of

malicious processes verified through VirusTotal. For each verified malicious process, it shows

the maximum anomaly score generated from the proposed model. Also, it indicates the number

of engines detected as malicious by VirusTotal's anti-virus engine. AVclass stands for

detection name. AVClass refers to the malware family, the name of the detected malware.

Accordingly, it shows the malicious behavior to be attempted. As a result, you can use the

event log to detect an unknown attack that does not detect an existing initial attack as an

antivirus.

_index _id ProcName FileName EventType EventSubType EventTime IP RemoteIP LocalIP ProcPath FilePath FileType

endpoint2-2020.01.0801D2550DAB1DC184A1099E6AE858514105489E:557559769464844motty.exe 78121e9be0d5a9527eb517b281b1b5c1process ChildProcessCreate 1.57846E+12 172.29.*.* C:\Users\jaejin\AppData\Local\Temp\Mxt121\bin\motty.exe44f50c742f731e70a2746370a8856151PE

endpoint2-2020.01.011B2A942084398F44A270923CE4E20B43AFCE8C:17179869185NaverAgent.exe network NetworkConnect 1.57792E+12 172.29.*.* 210.89.*.* 172.29.*.* C:\Program Files (x86)\naver\NaverAgent\NaverAgent.exe

endpoint2-2020.01.011B2A942084398F44A270923CE4E20B43AFCE8C:17179869186NaverAgent.exe network NetworkConnect 1.57792E+12 172.29.*.* 184.28.*.* 172.29.*.* C:\Program Files (x86)\naver\NaverAgent\NaverAgent.exe

endpoint2-2020.01.142B504CEBB2AF7BC45BE2965E6BA826A2B6674C:566935683130Code.exe network NetworkConnect 1.57897E+12 172.29.*.* 65.55.*.* 172.29.*.* C:\Users\jasungyoo\AppData\Local\Programs\Microsoft VS Code\Code.exe

endpoint2-2020.01.142B504CEBB2AF7BC45BE2965E6BA826A2B6674C:566935683138Code.exe network NetworkConnect 1.57897E+12 172.29.*.* 111.221.*.* 172.29.*.* C:\Users\jasungyoo\AppData\Local\Programs\Microsoft VS Code\Code.exe

endpoint2-2020.01.1437F1BA3F78D93944094CA11552319636BDC990:566935683132Code.exe b2fd9c9e2f7ff1b55d76502bbd61ba90process ChildProcessCreate 1.57896E+12 172.29.*.* C:\Users\jasungyoo\AppData\Local\Programs\Microsoft VS Code\Code.exe8e1080c90242a79908543b35948d301fPE

endpoint2-2020.01.1437F1BA3F78D93944094CA11552319636BDC990:566935683144Code.exe b2fd9c9e2f7ff1b55d76502bbd61ba90process ChildProcessCreate 1.57896E+12 172.29.*.* C:\Users\jasungyoo\AppData\Local\Programs\Microsoft VS Code\Code.exe8e1080c90242a79908543b35948d301fPE

endpoint2-2020.01.013AB9CAAE31D84A74300C87E71110FE5135A38E:721679059779800Hwp.exe f88155d117ecc14e164dbc60dd0d1f85file DocOpen 1.57792E+12 172.29.*.* C:\Program Files (x86)\Hnc\Hwp80\Hwp.exeb14e4ed0f7ee991337d75fe58272a221DOC

endpoint2-2020.01.083BFEEF8B0C7AB4F47AFA9DEE930731DD64210A:557559769464850motty.exe network NetworkConnect 1.57846E+12 172.29.*.* 172.29.*.* 172.29.*.* C:\Users\jaejin\AppData\Local\Temp\Mxt121\bin\motty.exe

endpoint2-2020.01.143C393733B08D27846DD9959969CEE8A5DE54E3:566935683116Code.exe b2fd9c9e2f7ff1b55d76502bbd61ba90process ChildProcessCreate 1.57897E+12 172.29.*.* C:\Users\jasungyoo\AppData\Local\Programs\Microsoft VS Code\Code.exe8e1080c90242a79908543b35948d301fPE

endpoint2-2020.01.08598BA8FC70451924C0318FA9AC37F110C8C057:557559769464839motty.exe 78121e9be0d5a9527eb517b281b1b5c1process ChildProcessCreate 1.57846E+12 172.29.*.* C:\Users\jaejin\AppData\Local\Temp\Mxt121\bin\motty.exe44f50c742f731e70a2746370a8856151PE

4920 Hwang et al.: Semi-supervised based Unknown Attack Detection in EDR Environment

Table 6. Unknown attack detection results in two proposed model

Process Name

Maximum Anomaly

Score Virus

Total
AVclass Malicious Behavior

1D

CNN

Auto-

Encoder

RPRTSetup.exe 1.0000 1.0000 12/71 buzus

Attempt to steal PC information

and modify the registry using

Keylogger function

controller.exe 1.0000 0.9999 10/72 high
A type of malicious process that

steals user information

svchost.exe 1.0000 0.9988 27/72 swrort

For easy malicious behavior,

registry manipulation related to

services and servers and drop of

malicious files

WinClientService.exe 1.0000 0.9998 18/72 kraddare

Automatically launches the

program and displays an

advertising window without use

consent

NaverAgent.exe 1.0000 0.9987 51/70 zegost

DLL injection into normal

svchost.exe file works, and

malicious DLL file performs

eavesdropping and carious

malicious function

defrag.exe 1.0000 - 59/72 delshad
Read data from binary image and

create own copy and system file

dasHost.exe 1.0000 - 45/72 johnnie

Task manager list may show

unwanted processes, Collects

information to fingerprint the

system

reg.exe 1.0000 - 41/67 hupigon

As a kind of backdoor, it creates a

self-replicated copy in a specific

folder and modifies the registry.

Also, it receives encrypted

commands from specific sites and

performs them

regsvr32.exe 1.0000 - 20/72 agen
Trojan horse that collects user's

keyboard input information

csrss.exe 1.0000 - 15/72 midie

create and set registry keys with a

series of long bytes to store

malware configuration

dumpchk.exe 1.0000 - 9/72 driverpack

PUP-like malware that can install

unwanted programs and steal

system and user information

wlanext.exe 0.9999 - 51/72 tiggre

Malware that can be remotely

controlled by and attacker's

command

sh.exe 0.9999 - 45/70 razy

Malicious code that installs

malicious extensions in web

browsers to provide phishing links

to infected PCs or to perform

mining activites

SetupImgBurn_2.5.8.0.e

xe
0.9998 0.9996 38/71 installcore

PUP-like malware that installs

unwanted programs and

communicates with malicious

networks

ose.exe 0.9998 - 44/72 mimikatz

Tools for stealing and decrypting

information related to various

accounts on Windows

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4921

keygen.exe 0.9998 - 35/68 high
A type of malicious process that

steals user information

NGM.exe 0.9993 - 25/65 razy

Malicious code that installs

malicious extensions in web

browsers to provide phishing links

to infected PCs or to perform

mining activities

Nox_unload.exe 0.9993 - 19/72 fusioncore

As kind of Adware.Malwarebytes’

detection name for a large family

of adware bundlers targeting

Windows systems. Users of

affected systems may find that

they have installed more than they

expected.

HncUpdate.exe 0.9992 - 36/70 agen
Trojan horse that collects user's

keyboard input information

install2.exe 0.9946 - 45/72 agen
Trojan horse that collects user's

keyboard input information

DropboxOEM.exe - 0.9904 53/69 fareit

Trojan horse that performs

malicious behavior by dropping a

malicious file similar to the normal

file name

DeviceManager.exe 0.9901 0.9993 51/65 phorpiex

Distribute spam campaigns,

including many malware and

massive sex torsion email

campaigns

FileZilla_3.46.3_win64

_sponsored-setup.exe
- 0.9885 16/71 fusioncore

As kind of Adware.Malwarebytes’

detection name for a large family

of adware bundlers targeting

Windows systems. Users of

affected systems may find that

they have installed more than they

expected.

taskhost.exe - 0.9833 49/72 autoit

A dropper that collects user

information by creating a

malicious file disguised as a

normal name

scrt726-x64.exe - 0.9938 46/72 installcore

PUP-like malware that installs

unwanted programs and

communicates with malicious

networks

ReaderUpdater.exe 0.9804 - 62/69 neshta

It is a kind of virus and spreads

through its own propagation

function. Encrypt the normal PE

file code in the Windows system

and insert the virus code. It also

creates malicious files in the

Windows system folder.

We detected and verified an unknown attack. Referring to Table 6, which shows the results

verified by the attack, it describes the process that VirusTotal's antivirus was detected as an

attack on two processes, the most detected number. We test the generated feature for each

event log in a sequence format as much as the window size. For example, if the window size

is 10, the top 10 including the corresponding event log is input, and the event log that occurs

next is trained as the output. Fig. 10 shows the defrag.exe detection process and verification

screen. In the above Fig. 10, to detect defrag.exe, including the defrage.exe event log, the top

10 KairoRun.exe event logs are input, and the next KakaoTalk.exe event log is trained as

4922 Hwang et al.: Semi-supervised based Unknown Attack Detection in EDR Environment

output. If the training model again tests the defrag.exe event log, a field called Loss is created

and a Loss value of 30.1815. It is used statistically and the anomaly score is calculated by

applying the CDF. At this time, the anomaly score is 1. This study detects this as anomalous

data because a specific threshold is set to 0.98. Therefore, when defrag.exe, which has detected

abnormal data, is verified through a total of viruses, it is created as shown in the figure below

in Fig. 10. It detected 59 anti-viruses out of 72. AVclass gives the name of the malware family,

which is delshad, the most common word for detection in 59 antiviruses. Fig. 11 goes through

the detection and verification process in the same way as in Fig. 10.

Fig. 10. Newly detected attack example-1(defrag.exe)

Fig. 11. Newly detected attack example-2(ReaderUpdate.exe)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4923

4.3 Operation policy

The proposed model operating policy can set the learning period in real time. The anomaly

detection method of the existing study has the disadvantage of having to label each log from

an operational point of view, because security administrators analyzed and detected using

labels. In this study, you can learn without a label as an unsupervised learning method. This

has the advantage of analyze the anomaly and not having to label each log. Normal processes

validated at a particular time can be retrained after a certain time. In other words, the

performance of the anomaly detection model is improved by using the results of the model

trained during a specific training period to provide normal behavioral information to the next

training model. Fig. 12 shows the real-time operational policy flow.

Fig. 12. Real-time operation policy flow

In addition, the proposed technology based on the existing motion log supports stable

anomaly detection. Fig. 13 is a flow chart showing that the results of the analysis can be

efficiently run with respect to legacy systems such as allowlist, denylist and pattern-based

policies. The proposed model is the process of detecting anomaly in the endpoint. Anomaly

detection results are displayed for each event, and each event is checked for abnormal behavior.

Fig. 13. Proposed policy flow chart

4924 Hwang et al.: Semi-supervised based Unknown Attack Detection in EDR Environment

If the event is not on the denylist, Fig. 13 proceeds to detect anomaly. If it turns out to be

abnormal, check the allowlist database. Events not in the allowlist database are manually

analyzed by experts. If you check for malicious behavior, you can update the denylist database

and, if it is a normal event, the allowlist database. Therefore, the allowlist or denylist policy is

expected to work effectively as many events are fired on the endpoint.

5. Conclusion

So far, we have focused on network security. We believed that endpoint security was sufficient

for vaccines and patches. Unfortunately, security incidents are not diminishing and the damage

is growing day by day. Therefore, as the number of advanced threats increases, we are rapidly

moving from past file-based prediction and defense to user behavior-based detection and

response. Recently, due to the advancement of 5G/IoT, various devices constitute an endpoint

environment, collecting and analyzing all the actions on the endpoint, and the EDR solution

for responding to the threat has been in the spotlight. EDR currently collects various events at

the endpoint, but detecting suspicious events is a difficult reality. In this paper, anti-virus does

not respond to the initial attack, so deep learning AutoEncoder and 1D-CNN are used to detect

unknown attacks. The detected attacks are verified using VirusTotal. In addition, various

policies can be applied for stable and effective operation in the endpoint environment. As an

example of model operation, we also proposed the operation policy of legacy systems using

allowlist and denylist. This can greatly improve performance by minimizing false positives.

The proposed model can be applied to various environments such as IoT, ICS, and cloud as

well as endpoints. In the future, we plan to verify data and improve models in various

environments as well as endpoints to ensure continuous operation and practicality.

References

[1] CISCO, Cisco Annual Internet Report (2018-2023) White Paper. [Online]. Available:

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/

white-paper-c11-741490.html

[2] H. H. Pajouh, R. Javidan, R. Khayami, A. Dehghantanha, and K. R. Choo, "A Two-Layer

Dimension Reduction and Two-Tier Classification Model for Anomaly-Based Intrusion Detection

in IoT Backbone Networks," IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 2,

pp. 314-323, 2019. Article (CrossRef Link)

[3] T. Li, Y. Jiang, C. Zeng, B. Xia, Z. Liu, W. Zhou, X. Zhu, W. Wang, L. Zhang, J. Wu, L. Xue, and

D. Bao, “FLAP: An end-to-end event log analysis platform for system management,” in Proc. of

the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.

1547-1556, 2017. Article (CrossRef Link)

[4] M. Zaman, T. Siddiqui, M. R. Amin, and M. S. Hossain, "Malware detection in Android by network

traffic analysis," in Proc. of 2015 International Conference on Networking Systems and Security

(NSysS), pp. 1-5, 2015. Article (CrossRef Link)

[5] T. Isohara, K. Takemori, and A. Kubota, "Kernel-based Behavior Analysis for Android Malware

Detection," in Proc. of 2011 Seventh International Conference on Computational Intelligence and

Security, pp. 1011-1015, 2011. Article (CrossRef Link)

[6] J. Sun, T. Jeng, C. Chen, H. Huang, and K. Chou, "MD-Miner: Behavior-Based Tracking of

Network Traffic for Malware-Control Domain Detection," in Proc. of 2017 IEEE Third

International Conference on Big Data Computing Service and Applications, pp. 96-105, 2017.

Article (CrossRef Link)

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html
https://doi.org/10.1109/TETC.2016.2633228
https://doi.org/10.1145/3097983.3098022
https://doi.org/10.1109/NsysS.2015.7043530
https://doi.org/10.1109/CIS.2011.226
https://doi.org/10.1109/BigDataService.2017.16

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 12, December 2020 4925

[7] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long Short Term Memory Networks for Anomaly

Detection in Time Series,” in Proc. of 23rd European Symposium on Artificial Neural Networks, p.

89, 2015. Article (CrossRef Link)

[8] M, Toledano, I. Cohen, Y. Ben-Simhon, and I. Tadeski, “Real-time anomaly detection system for

time series at scale,” Proceedings of Machine Learning Research, vol. 71, pp. 56-65, 2017.

Article (CrossRef Link)

[9] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log analysis for anomaly detection,”

in Proc. of the 2016 IEEE 27th International Symposium on Software Reliability Engineering

(ISSRE), pp. 207-218, 2016. Article (CrossRef Link)

[10] R. J. Gutierrez, B. C. Boehmke, K. W. Bauer, C. M Saie, and T. J Bihl, “anomalyDetection:

Implementation of augmented network log anomaly detection procedures,” The R Journal, vol. 9,

no. 2, pp. 354-365, 2017. Article (CrossRef Link)

[11] S. Garg, K. Kaur, N. Kumar, G. Kaddoum, A. Y. Zomaya, and R. Ranjan, "A Hybrid Deep

Learning-Based Model for Anomaly Detection in Cloud Datacenter Networks," IEEE Transactions

on Network and Service Management, vol. 16, no. 3, pp. 924-935, 2019. Article (CrossRef Link)

[12] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly detection techniques,”

Journal of Network and Computer Applications, vol. 60, pp. 19-31, 2016. Article (CrossRef Link)

[13] B. I. Kwak, M. R. Han, A. R. Kang, and H. K. Kim, “A study on detection methodology of threat

on cars from the viewpoint of IoT,” Journal of the Korea Institute of Information Security &

Cryptology, vol. 25, no. 2, pp. 441-421, 2015. Article (CrossRef Link)

[14] K. Kim, “Status of abnormal sign detection technology in smart manufacturing environment,"

Review of Korea Institute of Information Security and Cryptology, vol. 29, no. 2, pp. 36-47, 2019.

Article (CrossRef Link)

[15] I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy, and H. Ming, "AD-IoT: Anomaly

Detection of IoT Cyberattacks in Smart City Using Machine Learning," in Proc. of 2019 IEEE 9th

Annual Computing and Communication Workshop and Conference (CCWC), pp. 0305-0310, 2019.

Article (CrossRef Link)

[16] M. Kravchik and A. Shabtai, “Detecting cyberattacks in industrial control systems using

convolutional neural networks,” in Proc. of the 2018 Workshop on Cyber-Physical Systems

Security and PrivaCy, pp. 72-83, 2018. Article (CrossRef Link)

[17] S. Kim, C. Hwang, and T. Lee, "Anomaly Based Unknown Intrusion Detection in Endpoint

Environments," Electronics, vol. 9, no. 6, 2020. Article (CrossRef Link)

[18] T. Andrade, J. Gama, and P. Ribeiro, “W. Sousa and A. Carvalho, Anomaly Detection in Sequential

Data: Principles and Case Studies,” Widly Online Library, 2019. Article (CrossRef Link)

[19] L. Bontemps, V. L. Cao, J. McDermott, and L. K. L. Na, “Collective Anomaly Detection Based

on Long Short-Term Memory Recurrent Neural Networks,” Future Data and Security

Engineering, vol. 10018, pp 141-152, 2016. Article (CrossRef Link)

[20] M. Ahmed and A. N. Mahmood, "Network traffic analysis based on collective anomaly

detection," in Proc. of 2014 9th IEEE Conference on Industrial Electronics and Applications, pp.

1141-1146, 2014. Article (CrossRef Link)

[21] VirusTotal. [Online]. Available: https://www.virustotal.com/gui/home/search

[22] J. Chen, S. Sathe, C. Aggarwal, and D. Turaga, “Outlier detection with autoencoder ensembles,”

in Proc. of the 2017 SIAM International Conference on Data Mining, pp. 90-98, April 2017.

Article (CrossRef Link)

[23] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders,” in Proc. of the

23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–

674, 2017. Article (CrossRef Link)

https://www.researchgate.net/publication/304782562_Long_Short_Term_Memory_Networks_for_Anomaly_Detection_in_Time_Series
http://proceedings.mlr.press/v71/toledano18a/toledano18a.pdf
https://doi.org/10.1109/ISSRE.2016.21
https://journal.r-project.org/archive/2017/RJ-2017-039/index.html
https://ieeexplore.ieee.org/document/8758843
https://doi.org/10.1016/j.jnca.2015.11.016
https://doi.org/10.13089/JKIISC.2015.25.2.411
https://www.koreascience.or.kr/article/JAKO201914456459524.page
https://doi.org/10.1109/CCWC.2019.8666450
https://doi.org/10.1145/3264888.3264896
https://doi.org/10.3390/electronics9061022
https://doi.org/10.1002/047134608X.W8382
https://link.springer.com/chapter/10.1007%2F978-3-319-48057-2_9#citeas
https://doi.org/10.1109/ICIEA.2014.6931337
https://www.virustotal.com/gui/home/search
https://doi.org/10.1137/1.9781611974973.11
https://doi.org/10.1145/3097983.3098052

4926 Hwang et al.: Semi-supervised based Unknown Attack Detection in EDR Environment

Chan Woong Hwang is studying for a master`s degree in information security at Hoseo

University. He received a bachelor`s degree in information security from Hoseo University.

His research interests include malware analysis, machine learning and anomaly detection.

Do Yeon Kim is studying for a master`s degree in information security at Hoseo University.

She received a bachelor`s degree in information security from Konyang University. Her

research is interest in deep learning, malware analysis and malware detection.

Tae Jin Lee graduated from Postech Computer Engineering Department in 2003 and

graduated from Yonsei University in 2008 and Ajou University in 2017. He worked at Korea

Internet Security Agency from 2003 to 2017 and he has been worked in Hoseo University

since 2017. His research area are intrusion tolerance technology, VoIP/Wibro security,

malware distribution detection/analysis, email security, cyber black box, and malware

profiling and mobile payment fraud detection. His current main interests are artificial

intelligence, malicious code analysis, intrusion detection.

