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Abstract 
 

Cyberattacks penetrate the server and perform various malicious acts such as stealing 

confidential information, destroying systems, and exposing personal information. To achieve 

this, attackers perform various malicious actions by infecting endpoints and accessing the 

internal network. However, the current countermeasures are only anti-viruses that operate in a 

signature or pattern manner, allowing initial unknown attacks. Endpoint Detection and 

Response (EDR) technology is focused on providing visibility, and strong countermeasures 

are lacking. If you fail to respond to the initial attack, it is difficult to respond additionally 

because malicious behavior like Advanced Persistent Threat (APT) attack does not occur 

immediately, but occurs over a long period of time. In this paper, we propose a technique that 

detects an unknown attack using an event log without prior knowledge, although the initial 

response failed with anti-virus. The proposed technology uses a combination of AutoEncoder 

and 1D CNN (1-Dimention Convolutional Neural Network) based on semi-supervised 

learning. The experiment trained a dataset collected over a month in a real-world commercial 

endpoint environment, and tested the data collected over the next month. As a result of the 

experiment, 37 unknown attacks were detected in the event log collected for one month in the 

actual commercial endpoint environment, and 26 of them were verified as malicious through 

VirusTotal (VT). In the future, it is expected that the proposed model will be applied to EDR 

technology to form a secure endpoint environment and reduce time and labor costs to 

effectively detect unknown attacks. 
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1. Introduction 

Recently, as the popularity of bring your own device (BYOD) and IoT has increased, the 

number of individual devices connected to an organization's network is rapidly increasing. 

According to the Cisco Annual Internet Report [1], the number of devices connected to the IP 

network is expected to be more than three times the world's population by 2023. In 2023, there 

will be 3.6 network devices per person, with a total of 293 billion network devices. If the 

device is connected to a network, it is considered an endpoint. Fig. 1 shows a sample of what 

is considered an endpoint. These are the entry points for threats and malware, so endpoints 

like mobile and remote devices are targeted. It attempts to access the internal network through 

an endpoint with security flaws or vulnerabilities. Attackers who have access to the internal 

network can attempt various malicious actions, such as data loss or corruption. 

 

 
Fig. 1.  Example of Endpoint 

 

Endpoint security started with a traditional signature security solution. It detects changes to 

the file system or application that match known patterns and blocks the program from running. 

This made the Internet and e-commerce increasingly popular, making malware more and more 

frequent, complex, and difficult to detect. In addition, new security technologies are needed as 

fileless malware is no longer dependent on signatures. This bypasses existing signature-style 

security solutions without creating a file. For example, a malicious Dynamic Link Library 

(DLL) is injected into a normal process or a malicious VBScript is inserted into a normal 

Microsoft Office document. Moreover, it modifies the registry to attempt additional malicious 

behavior. Thus, a combination of machine learning and Artificial Intelligence (AI) can block 

unknown attacks from existing knowledge such as firewalls, reputations and heuristics, rather 

than traditional security solutions that rely on signatures. 

We propose an anomaly detection approach through AutoEncoder and 1D-CNN that reflects 

temporal features in endpoint environments. Anomaly detection is not up-to-date and has been 

studied for a long time, but it has been highlighted relatively recently with big data. In other 

words, anomaly detection aims to find anomaly data in a given dataset. Anomaly detection 

approaches are used in a variety of areas, including financial fraud detection, network intrusion 

detection, human behavior analysis, and gene expression analysis [2-5]. Anomaly detection 

has also been studied in the field of time series data with time characteristics. In time series 

data, because a specific point in time is greatly affected by features before and after that point, 

it is usually necessary to select the appropriate small window size of time to proceed with the 
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analysis. Analytical goals are categorized as finding abnormal point of time or patterns of 

abnormal change. In a dataset, when one point is judged to be abnormal for the other points, 

it is called point anomaly and when one or more data is judged to be abnormal in a particular 

data areas, it is called a collective anomaly. In addition, when an object within a dataset is 

deemed strange in a particular context, it is called contextual anomaly. It is also classified as 

unsupervised learning and supervised learning, depending on whether labels are available for 

anomaly in past datasets. Most of the existing log-based detection techniques work by using 

network logs to detect and update the database [6]. In recent years, effective research has been 

conducted on log analysis based on machine learning or large-scale logs, but it is insufficient 

[7-11]. Anomaly detection is different from a model that simply classifies malicious and 

normal. Ahmed et al. [12] explained the research challenge that publicly labeled datasets are 

not available despite the many techniques available for anomaly detection. Therefore, this 

paper proposes a technique to detect unknown attacks without prior knowledge, such as 

without a label. Based on semi-supervised learning, data collected for one month from a 

commercial endpoint environment is assumed to be normal, and normal data and out-of-

bounds data are detected. It is a model that reflects continuous data in chronological order 

occurring at the endpoint. We expect the proposed model to make it easier for endpoints to 

recognize previously unseen attack behaviors, reducing the time and labor costs of dealing 

with new attacks. 

Section 2 describes related studies on data processing that reflects common anomaly 

detection and sequences. Section 3 proposes an anomaly detection model at the endpoint. 

Section 4 provides anomaly detection results using the proposed model and discusses 

operational policies. Finally, Section 5 has a conclusion. 

2. Related Work 

Research on technology for anomaly detection of data related to ICS and EDR has been 

conducted [13, 14]. Alrashdi et al. [15] proposed a network-based IoT Anomaly Detection 

System (AD-IoT) using a Random Forest (RF) algorithm among machine learning algorithms. 

Attacks were detected by identifying normal traffic and abnormal traffic using False Positive 

Rates. Experiments were conducted using the UNSW-NB15 dataset, and Table 1 shows the 

accuracy, recall, and F1-score for normal/abnormal traffic prediction using RF. An average 

accuracy of about 98% was derived, and recall and F1-Score were also about 98%. 

 
Table 1. Performance of binary classification 

Model Predicted Precision Recall F1-Score 

RF 

Normal 0.99 0.99 0.99 

Attack 0.79 0.97 0.86 

Avg/total 0.98 0.98 0.98 

 

Kravchik et al. [16] conducted a study to detect cyberattacks on ICS using CNN. SWaT 

dataset was used, and the dataset includes 36 various cyberattacks. The experiment was 

conducted with a model combining 1D-CNN and Long Short-Term Memory (LSTM) that can 

be quickly trained in detecting anomalies of ICS, rather than 2D-CNN, which is frequently 

used for image processing. Fig. 2 shows the 1D-CNN model. In the 1D-CNN model, 

Convolution-ReLU-Maxpooling was applied to each feature along the time axis. In the model 

that combines CNN and LSTM, the data is processed in the convolution layer and then 

transmitted to the LSTM layer to predict the value. Table 2 shows the F1-score for each model 
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tested in the study. CNN-based model showed higher accuracy when detecting anomaly than 

CNN and LSTM combined models. The highest accuracy was obtained when 8 convolutional 

layers were arranged, but the CNN composed of 4 layers was also not much different from the 

CNN with 8 convolutional layers in accuracy, and progressed much faster in speed. 

 

 
Fig. 2.  1D-CNN model configuration 

 

Table 2. F1-scores per stage 

Network configuration P1 P2 P3 P4 P5 All 

4 inception layer,  

kernel = 2, 32 filters 
0.834 0.626 0.866 0.875 0.714 0.609 

8 convolutional layers,  

kernel = 2, 32 filters 
0.924 0.595 0.918 0.901 0.795 0.775 

4 convolutional layers,  

kernel = 2, 32 filters 
0.89 0.58 0.858 0.907 0.731 0.688 

4 convolutional layers + 3 LSTM layers,  

kernel = 2, 32 filters 
0.857 0.666 0.956 0.909 0.8 0.646 

2 convolutional layers,  

kernel = 2, 32 filters 
0.805 0.472 0.85 0.87 0.656 0.632 

3 LSTM layers with state = 256 0.778 0.453 0.787 0.805 0.714 0.626 

 

Kim et al. [17] detects anomalies in the event log using LOF and AutoEncoder among the 

anomaly detection techniques and suggests event rules generated through an attack profile. 

LOF was calculated based on the k-Nearest Neighbor (kNN) algorithm. The distance value 

between the reference point and the test data is converted into a score to determine whether it 

is a variant, and the larger the distance value is, the greater the difference from the normal data 

is. The AutoEncoder model trains independently, separating network behavior from system 

behavior. In addition, by analyzing the anomaly event, the malicious process and the threats 

that may occur are detected. Create an attack profile to create a rule that can be detected based 

on an attack log. Using the generated rules, users can be alerted when an attack on the endpoint 

occurs and it is effective in detecting an attack. Fig. 3 shows the main attack scenario in the 

attack profile. 
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Fig. 3.  Main attack scenario in the attack profile 

 

Independent Identically Distribution (IID) data means that random variables are distributed 

independently and equally, and Sequential data means that data is generated in a same stream 

in sequential order. Time Series means that data is generated from a stream with the same 

spacing between successive objects. There are Point anomaly, Contextual anomaly, and 

Collective anomaly to detect anomaly, and Deep Anomaly Detection (DAD), which detects 

all three types of anomaly. Point anomaly is classified as an anomaly as the distance between 

the single instance and the other instance is farther, and is mainly used for credit card fraud 

detection. Contextual anomaly detects abnormal signs considering context and is commonly 

used in time series data. When anomalous values exist between constant contexts (values), 

abnormal signs are judged. Collective anomaly, unlike point anomaly, detects anomaly for 

multiple instances rather than a single instance. 

Andrade et al. [18] proposed a method for detecting anomaly in sequential data. For 

detecting anomaly, three data mining techniques and various algorithms were proposed: 

Unsupervised, Semi-supervised, and Supervised. The unsupervised learning is based on 

untrained data to detect anomaly and can be grouped into statistics, clustering, distance-based 

and density-based techniques. The supervised learning detects anomaly through learning the 

neural network. Semi-supervised learning combines a small amount of data with a label and a 

large number of data without a label to learn through machine learning. Training data with 

label is trained as supervised learning, and training data without label is trained as 

unsupervised learning. The anomaly detection using time series data uses a data set performed 

at the same time interval among continuously observed data, and generally measures a specific 

period. One example is the Symbolic Aggregate Approximation (SAX) algorithm. The SAX 

algorithm is an algorithm that reduces dimensions and duplication of time series data, which 

has the advantage of using less storage space. However, sliding windows are required as 

parameters to increase the accuracy of the algorithm. But, Recursive Ray Acoustics (RRA) 

algorithm improves this problem. Unlike the SAX algorithm, it is possible to detect anomaly 

without a time limit if there is no need for a sliding window value and only an initial value. 

Fig. 4 shows the results of detecting anomaly with the RRA algorithm using an 

electrocardiography (EGC) dataset. Of the two, the figure above shows the location of the 

abnormal ECG, and the figure below shows the abnormal signs appearing at the location 
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shown above using the regular density curve. 

 

 
Fig. 4.  Anomaly discovery in electrocardiography (EGC) dataset 

3. Proposed Model 

3.1 Overview 

We use the feature difference between data that happened in the past and what is happening to 

detect anomaly at the endpoint. The larger the difference between normal data and new data 

that has not occurred in the past, the more it can be identified as anomalous. This section 

proposes an anomaly detection method for six fields collected from endpoints using 

AutoEncoder and 1D-CNN. Fig. 5 shows the overall structure of the proposed model. First, 

we collect the logs collected from the endpoints in the internal network. Based on the collected 

data, it extracts the features for learning the anomaly detection engine. AutoEncoder and 1D-

CNN are applied to calculate anomaly score that represent data differences. Since both models 

are deep learning algorithms, they return a loss value indicating the difference from the training 

model during the test. The returned loss value is used statistically. Computes the Cumulative 

Distribution Function (CDF) value expressed as a number between 0 and 1 using a standard 

normal distribution. The CDF value thus generated is used as the final anomaly score. 

Anomaly score is used to identify anomaly. These anomaly engines can access suspicious 

Internet Protocol addresses (IPs) or detect suspicious processes and classify data by process 

for detailed analysis. If anomaly are detected using anomaly score, you can also consider 

collective anomaly using flow data collection [19, 20]. Detected abnormal data is verified 

through VirusTotal (VT) [21]. VirusTotal shows the number of engines that have determined 

that more than 70 antiviruses are malicious. Anomaly data determined to be not malicious can 

be quickly excluded from verification through the allowlist policy. 

 

 
Fig. 5.  Overall structure of the proposed model 
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3.2 Unknown Attack Detection Engine 

3.2.1 Feature Engineering 

Only 6 specific fields are used from the collected endpoint log data. Extract 22 features using 

6 fields. The 6 fields are categorized into process path, destination IP, event time, process type, 

event type, and file type. String data, such as process path fields, must be converted to vectors 

in order to train the model. We generate a fixed length vector through feature hashing. Before 

the feature hashing, strings are divided into n lengths consecutively using n-gram. Apply the 

generated n-gram list to the feature hashing function. The pseudo-code of the feature hashing 

function is shown in Fig. 6. 

 

 
Fig. 6.  Feature hashing pseudo-code 

 

After converting the string divided by n-gram into a unique number through the hash 

function, the remainder after the modular operation is counted. As a result, a field consisting 

of a string can generate a feature vector of a desired size through feature hashing. The 

destination IP field also creates a feature vector by feature hashing with a string including dots. 

Also, in order to add suspicious local IP address of the accessed IP address, class A and B are 

separated and Min-Max Scaling is applied. This is for network behavior only, and the system 

behavior is assigned a value of 0 because the value of the destination IP field does not exist. 

The event time field was divided into day of the week, weekday, and weekend, and features 

were created with different values every 3 hours. Also, the process type, event type, and file 

type fields are created with different values of features depending on the corresponding type. 

Table 3 shows the processing method and input example of Feature Engineering. There are 

four major process types. First, processes such as powershell.exe or cmd.exe are classified as 

shell-based processes. Second, processes such as wscript.exe or cscirpt.exe are classified as 

script-based processes. Third, processes such as WINWORD.EXE, EXCEL.EXE, and 

POWERPNT.EXE are classified as word-based processes. Finally, all other processes are 

classified as general processes. File types are classified into PE, script, ZIP, DOC, IMAGE, 

and MEDIA. Event types are classified into network, file, module, process, and registry. 

 
Table 3. Example of processing method and input of feature engineering 

Used Field Method of Feature Extraction Input Example 

Process Path SHA256(2-gram(Process Path)) mod 10 
C:\Program Files(x86)\Microsoft 

Office\POWERPNT.EXE 

Destination IP 

SHA256(2-gram(IP)) mod 4 127.0.0.1 

MinMaxScaling(IP.A_Class, 

IP.B_Class) 
127.0 

Event Time 
If (EventTime = Moday): 

feature = 1 
1564519160346 
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else if (EventTime = Tuesday): 

feature = 2 

else if (EventTime = Sunday): 

feature = 7 

If (EventTime =Weekday): 

feature = 1 

else if (EventTime =Weekend): 

feature = 2 

If (EventTime = 0~3 time): 

feature = 0 

else if (EventTime = 3~6 time): 

feature = 1 

else if (EventTime = 21~24time): 

feature = 8 

Process Type 

If (ProcessType = Normal): 

feature = 1 

else if (ProcessType = Shell): 

feature = 2 

else if (ProcessType =Word): 

feature = 3 

POWERPNT.EXE 

Event Type 

If (EventType = file): 

feature = 1 

else if (EventType = module): 

feature = 2 

else if (EventType = process): 

feature = 3 

file 

File Type 

If (FileType = PE): 

feature = 1 

else if (FileType = Script): 

feature = 2 

else if (FileType = Zip): 

feature = 3 

PE 

3.2.2 AutoEncoder based unknown attack model 

The collected endpoint log data is based on unsupervised learning because no label exists. We 

use the AutoEncoder model to calculate anomaly score and detect anomaly. AutoEncoder is a 

neural network that simply copies input to output as shown in Fig. 7. 

 
Fig. 7.  AutoEncoder configuration 

 

Using these AutoEncoder features, training the normal event log in the past makes use of 

the fact that the loss value is large when predicting abnormal data [22, 23]. The parameters 
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of the AutoEncoder are learned in the direction of minimizing the loss, and it is judged that 

the greater the loss generated by the AutoEncoder model learned during testing, the greater 

the anomaly. The loss occurring at this time uses the Mean Squared Error (MSE). The loss 

value using the MSE function is shown in equation (1).  

    

                                     𝛿𝑖 =
1

𝑝
∑ (𝑥𝑖𝑗 − 𝑥𝑖𝑗`)

2𝑝
𝑗=1                                         (1) 

 

If the input is 𝑥𝑖 and the output is the same 𝑥𝑖` as the input, the loss value 𝛿𝑖 is 𝑖 = 1,⋯ , 𝑛 

means the event log. Although the loss value 𝛿𝑖 can be used as an anomaly score, the proposed 

model used a statistical an anomaly score. Here, 𝑝 means the number of features, which is the 

number of dimensions of input and output. In the experiment configuration, the input layer 

and output layer nodes are set to 22, which is the number of features, and the hidden layers are 

set in the order of 14, 6, and 14 to undergo the encoding and decoding process. Each layer's 

activation function uses the Relu function to return a value less than 0 as 0, and a value greater 

than 0 as it is. 

3.2.3 1D-CNN based unknown attack detection model  

CNN is a kind of deep learning algorithm and was developed for classifying images. In the 

process of learning features, it uses 2D inputs representing the pixel and color channels of the 

image. CNN utilizes a number of filters that can be used as shared parameters to maintain 

spatial information of an image in 2D, effectively extract and learn features from adjacent 

images. CNN has the advantage of enabling easier learning with minimal parameters and pre-

processing. The following is the formula of the output value according to the input data of 

CNN. 

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∑𝑥(𝑎)𝑤(𝑡 − 𝑎).                          (2) 

 

𝑠(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)𝑛𝑚      (3) 

 

Equation (2) is an output equation of the CNN layer for 1-dimensional input data. 𝑥 is the 

input data, 𝑤 is the kernel map and 𝑠(𝑡) is the output layer feature map. Equation (3) is an 

output equation of the CNN layer for 2D input data. 𝐼 is the input data, 𝐾 is the kernel map, 

and 𝑠(𝑖, 𝑗) is the output layer 2D feature map. CNN works the same way, whether in 1, 2 or 3 

dimensions. The difference is the structure of the input data and how the filter, also called the 

convolution kernel or feature detector, moves the data. Fig. 8 shows the difference between a 

1D-CNN and a 2D-CNN. 

 
(a) 

 
(b) 

Fig. 8.  Difference between 1D CNN and 2D CNN; (a) 1D CNN feature detector movement method; 

(b) 2D CNN feature detector movement method 
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We can apply 1D-CNN to sequence data. Extract features from sequence data and map 

internal features in the sequence. 1D-CNN is very effective at deriving features from fixed 

length segments of the entire dataset, and the location of the features in the segment is not 

critical. The 1D-CNN’s final output is a one-dimensional vector because the feature detector 

moves in one direction and proceeds with convolution. We applied the 1D-CNN by learning 

the event log in sequence over time and predicting the next event log. We set the kernel size 

to 5 to reflect the sequence of the top 5 events. The filter size is set to 128 to create the feature 

map 1*128 vectors. The output is 22 features of the next event log. We ran a total of 5 epochs, 

and since 3 epochs the training evaluation has not changed noticeably. 

3.2.4 Statistical Approach for Anomaly Score 

We use statistically the loss values tested in the AutoEncoder and 1D-CNN models. Anomaly 

detection takes advantage of the fact that when testing normal data against a trained model, 

the loss that occurs is large. Statistical analysis of data by calculating z-score and CDF using 

loss values. Fig. 9 shows the Example of cumulative distribution function. 

 
Fig. 9.  Cumulative distribution function example 

 

CDF indicates the probability that a random variable is less than or equal to a certain value 

for a particular probability distribution. Therefore, the CDF is calculated for statistical analysis 

using the loss value and the CDF value is used as the anomaly score. If the anomaly score is 

greater than the set threshold, it is judged as an anomaly data. 

3.3 Analysis and Verification of Anomaly Data 

VirusTotal is used to verify whether the anomaly detected data is actually a malicious process. 

VirusTotal is a website that provides file scanning for free. The site scans with a variety of 

antivirus engines such as FireEye, Kaspersky, Microsoft, Trend Micro, which are well known 

to us, and shows the results transparently. VirusTotal determines whether it is 

malicious/normal through various anti-virus engines through file upload, URL inspection, and 

hash value inspection. It also shows various hash values for files (MD5, SHA-1, SHA-256, 

Vhash, etc.) and file information. By verifying the hash value of the anomaly data, it extracts 

the malicious/normal status of each of more than 70 anti-virus engines and the name of the 

detected malicious code. However, because anti-virus may be misdiagnosed, if more than 5 

anti-virus engines determine that the verification result is malicious, it is judged as malicious 

data. 

4. Unknown Attack Detection Results 

4.1 Dataset 

The dataset used in the experiment was collected in a real commercial endpoint environment. 
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Table 4 shows the original dataset. The original dataset consists of 13 fields. Each event log 

has a specific process name. The EventType field can distinguish whether the event log is a 

network action or a system action. EventSubType is detailed in the EventType field behavior. 

In addition, there is a time field where the event log occurred and a corresponding endpoint IP 

address field. The RemoteIP field is present only when the EventType is network. This means 

the destination IP. The ProPath field means where the process of the event exists. FilePath 

means the location of the file, so it does not exist in network behavior. FileType, likewise, 

doesn't exist in network behavior, it means the file is a Portable Executable (PE) file or a file 

type like a document file. Since the original dataset is data collected in a real commercial 

environment, the file name and file path are encrypted. Therefore, other fields such as file 

name and file path cannot be used. The dataset collected at the endpoint was provided by G* 

Corporation. We used 8,748,392 event logs collected in January 2020 for training, and 

9,142,782 event logs collected in February 2020 for testing. Because this data is provided by 

the enterprise, the file name and file path are encrypted. Therefore, other fields such as file 

name and file path cannot be used. Table 5 shows the dataset configuration used. 

 
Table 4. Original dataset collected from a real commercial endpoint environment 

 
 

Table 5. Dataset configuration 
Data Collection Collection Period Event Count 

Training 
G* 

January 1, 2020 – January 31, 2020 8,748,392 

Test February 1, 2020 – February 29, 2020 9,142,782 

4.2 Unknown Attack Detection Results 

We proposed a model to detect unknown attacks based on Autoencoder and 1D CNN. As a 

result of the experiment, all of the proposed models are converted to the number of 0 and 1 by 

applying the CDF from the loss value for the test data. We set the threshold to 0.98, and if it 

is 0.98 or more, it is judged as a suspicious attack. However, since the detected suspected 

attack behavior cannot be judged as malicious, it is verified through VirusTotal to determine 

if it is actually malicious. Table 6 shows the proven unknown attacks. It shows the list of 

malicious processes verified through VirusTotal. For each verified malicious process, it shows 

the maximum anomaly score generated from the proposed model. Also, it indicates the number 

of engines detected as malicious by VirusTotal's anti-virus engine. AVclass stands for 

detection name. AVClass refers to the malware family, the name of the detected malware. 

Accordingly, it shows the malicious behavior to be attempted. As a result, you can use the 

event log to detect an unknown attack that does not detect an existing initial attack as an 

antivirus. 
 

 

 

_index _id ProcName FileName EventType EventSubType EventTime IP RemoteIP LocalIP ProcPath FilePath FileType

endpoint2-2020.01.0801D2550DAB1DC184A1099E6AE858514105489E:557559769464844motty.exe 78121e9be0d5a9527eb517b281b1b5c1process ChildProcessCreate 1.57846E+12 172.29.*.* C:\Users\jaejin\AppData\Local\Temp\Mxt121\bin\motty.exe44f50c742f731e70a2746370a8856151PE

endpoint2-2020.01.011B2A942084398F44A270923CE4E20B43AFCE8C:17179869185NaverAgent.exe network NetworkConnect 1.57792E+12 172.29.*.* 210.89.*.* 172.29.*.* C:\Program Files (x86)\naver\NaverAgent\NaverAgent.exe

endpoint2-2020.01.011B2A942084398F44A270923CE4E20B43AFCE8C:17179869186NaverAgent.exe network NetworkConnect 1.57792E+12 172.29.*.* 184.28.*.* 172.29.*.* C:\Program Files (x86)\naver\NaverAgent\NaverAgent.exe

endpoint2-2020.01.142B504CEBB2AF7BC45BE2965E6BA826A2B6674C:566935683130Code.exe network NetworkConnect 1.57897E+12 172.29.*.* 65.55.*.* 172.29.*.* C:\Users\jasungyoo\AppData\Local\Programs\Microsoft VS Code\Code.exe

endpoint2-2020.01.142B504CEBB2AF7BC45BE2965E6BA826A2B6674C:566935683138Code.exe network NetworkConnect 1.57897E+12 172.29.*.* 111.221.*.* 172.29.*.* C:\Users\jasungyoo\AppData\Local\Programs\Microsoft VS Code\Code.exe

endpoint2-2020.01.1437F1BA3F78D93944094CA11552319636BDC990:566935683132Code.exe b2fd9c9e2f7ff1b55d76502bbd61ba90process ChildProcessCreate 1.57896E+12 172.29.*.* C:\Users\jasungyoo\AppData\Local\Programs\Microsoft VS Code\Code.exe8e1080c90242a79908543b35948d301fPE

endpoint2-2020.01.1437F1BA3F78D93944094CA11552319636BDC990:566935683144Code.exe b2fd9c9e2f7ff1b55d76502bbd61ba90process ChildProcessCreate 1.57896E+12 172.29.*.* C:\Users\jasungyoo\AppData\Local\Programs\Microsoft VS Code\Code.exe8e1080c90242a79908543b35948d301fPE

endpoint2-2020.01.013AB9CAAE31D84A74300C87E71110FE5135A38E:721679059779800Hwp.exe f88155d117ecc14e164dbc60dd0d1f85file DocOpen 1.57792E+12 172.29.*.* C:\Program Files (x86)\Hnc\Hwp80\Hwp.exeb14e4ed0f7ee991337d75fe58272a221DOC

endpoint2-2020.01.083BFEEF8B0C7AB4F47AFA9DEE930731DD64210A:557559769464850motty.exe network NetworkConnect 1.57846E+12 172.29.*.* 172.29.*.* 172.29.*.* C:\Users\jaejin\AppData\Local\Temp\Mxt121\bin\motty.exe

endpoint2-2020.01.143C393733B08D27846DD9959969CEE8A5DE54E3:566935683116Code.exe b2fd9c9e2f7ff1b55d76502bbd61ba90process ChildProcessCreate 1.57897E+12 172.29.*.* C:\Users\jasungyoo\AppData\Local\Programs\Microsoft VS Code\Code.exe8e1080c90242a79908543b35948d301fPE

endpoint2-2020.01.08598BA8FC70451924C0318FA9AC37F110C8C057:557559769464839motty.exe 78121e9be0d5a9527eb517b281b1b5c1process ChildProcessCreate 1.57846E+12 172.29.*.* C:\Users\jaejin\AppData\Local\Temp\Mxt121\bin\motty.exe44f50c742f731e70a2746370a8856151PE
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Table 6. Unknown attack detection results in two proposed model 

Process Name 

Maximum Anomaly 

Score Virus

Total 
AVclass Malicious Behavior 

1D 

CNN 

Auto-

Encoder 

RPRTSetup.exe 1.0000 1.0000 12/71 buzus 

Attempt to steal PC information 

and modify the registry using 

Keylogger function 

controller.exe 1.0000 0.9999 10/72 high 
A type of malicious process that 

steals user information 

svchost.exe 1.0000 0.9988 27/72 swrort 

For easy malicious behavior, 

registry manipulation related to 

services and servers and drop of 

malicious files 

WinClientService.exe 1.0000 0.9998 18/72 kraddare 

Automatically launches the 

program and displays an 

advertising window without use 

consent 

NaverAgent.exe 1.0000 0.9987 51/70 zegost 

DLL injection into normal 

svchost.exe file works, and 

malicious DLL file performs 

eavesdropping and carious 

malicious function 

defrag.exe 1.0000 - 59/72 delshad 
Read data from binary image and 

create own copy and system file 

dasHost.exe 1.0000 - 45/72 johnnie 

Task manager list may show 

unwanted processes, Collects 

information to fingerprint the 

system 

reg.exe 1.0000 - 41/67 hupigon 

As a kind of backdoor, it creates a 

self-replicated copy in a specific 

folder and modifies the registry. 

Also, it receives encrypted 

commands from specific sites and 

performs them 

regsvr32.exe 1.0000 - 20/72 agen 
Trojan horse that collects user's 

keyboard input information 

csrss.exe 1.0000 - 15/72 midie 

create and set registry keys with a 

series of long bytes to store 

malware configuration 

dumpchk.exe 1.0000 - 9/72 driverpack 

PUP-like malware that can install 

unwanted programs and steal 

system and user information 

wlanext.exe 0.9999 - 51/72 tiggre 

Malware that can be remotely 

controlled by and attacker's 

command 

sh.exe 0.9999 - 45/70 razy 

Malicious code that installs 

malicious extensions in web 

browsers to provide phishing links 

to infected PCs or to perform 

mining activites 

SetupImgBurn_2.5.8.0.e

xe 
0.9998 0.9996 38/71 installcore 

PUP-like malware that installs 

unwanted programs and 

communicates with malicious 

networks 

ose.exe 0.9998 - 44/72 mimikatz 

Tools for stealing and decrypting 

information related to various 

accounts on Windows 
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keygen.exe 0.9998 - 35/68 high 
A type of malicious process that 

steals user information 

NGM.exe 0.9993 - 25/65 razy 

Malicious code that installs 

malicious extensions in web 

browsers to provide phishing links 

to infected PCs or to perform 

mining activities 

Nox_unload.exe 0.9993 - 19/72 fusioncore 

As kind of Adware.Malwarebytes’ 

detection name for a large family 

of adware bundlers targeting 

Windows systems. Users of 

affected systems may find that 

they have installed more than they 

expected. 

HncUpdate.exe 0.9992 - 36/70 agen 
Trojan horse that collects user's 

keyboard input information 

install2.exe 0.9946 - 45/72 agen 
Trojan horse that collects user's 

keyboard input information 

DropboxOEM.exe - 0.9904 53/69 fareit 

Trojan horse that performs 

malicious behavior by dropping a 

malicious file similar to the normal 

file name 

DeviceManager.exe 0.9901 0.9993 51/65 phorpiex 

Distribute spam campaigns, 

including many malware and 

massive sex torsion email 

campaigns 

FileZilla_3.46.3_win64

_sponsored-setup.exe 
- 0.9885 16/71 fusioncore 

As kind of Adware.Malwarebytes’ 

detection name for a large family 

of adware bundlers targeting 

Windows systems. Users of 

affected systems may find that 

they have installed more than they 

expected. 

taskhost.exe - 0.9833 49/72 autoit 

A dropper that collects user 

information by creating a 

malicious file disguised as a 

normal name 

scrt726-x64.exe - 0.9938 46/72 installcore 

PUP-like malware that installs 

unwanted programs and 

communicates with malicious 

networks 

ReaderUpdater.exe 0.9804 - 62/69 neshta 

It is a kind of virus and spreads 

through its own propagation 

function. Encrypt the normal PE 

file code in the Windows system 

and insert the virus code. It also 

creates malicious files in the 

Windows system folder. 

 

We detected and verified an unknown attack. Referring to Table 6, which shows the results 

verified by the attack, it describes the process that VirusTotal's antivirus was detected as an 

attack on two processes, the most detected number. We test the generated feature for each 

event log in a sequence format as much as the window size. For example, if the window size 

is 10, the top 10 including the corresponding event log is input, and the event log that occurs 

next is trained as the output. Fig. 10 shows the defrag.exe detection process and verification 

screen. In the above Fig. 10, to detect defrag.exe, including the defrage.exe event log, the top 

10 KairoRun.exe event logs are input, and the next KakaoTalk.exe event log is trained as 
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output. If the training model again tests the defrag.exe event log, a field called Loss is created 

and a Loss value of 30.1815. It is used statistically and the anomaly score is calculated by 

applying the CDF. At this time, the anomaly score is 1. This study detects this as anomalous 

data because a specific threshold is set to 0.98. Therefore, when defrag.exe, which has detected 

abnormal data, is verified through a total of viruses, it is created as shown in the figure below 

in Fig. 10. It detected 59 anti-viruses out of 72. AVclass gives the name of the malware family, 

which is delshad, the most common word for detection in 59 antiviruses. Fig. 11 goes through 

the detection and verification process in the same way as in Fig. 10. 

 

 
Fig. 10.  Newly detected attack example-1(defrag.exe) 

 

 
Fig. 11.  Newly detected attack example-2(ReaderUpdate.exe) 
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4.3 Operation policy 

The proposed model operating policy can set the learning period in real time. The anomaly 

detection method of the existing study has the disadvantage of having to label each log from 

an operational point of view, because security administrators analyzed and detected using 

labels. In this study, you can learn without a label as an unsupervised learning method. This 

has the advantage of analyze the anomaly and not having to label each log. Normal processes 

validated at a particular time can be retrained after a certain time. In other words, the 

performance of the anomaly detection model is improved by using the results of the model 

trained during a specific training period to provide normal behavioral information to the next 

training model. Fig. 12 shows the real-time operational policy flow. 

 

 
Fig. 12.  Real-time operation policy flow 

 

In addition, the proposed technology based on the existing motion log supports stable 

anomaly detection. Fig. 13 is a flow chart showing that the results of the analysis can be 

efficiently run with respect to legacy systems such as allowlist, denylist and pattern-based 

policies. The proposed model is the process of detecting anomaly in the endpoint. Anomaly 

detection results are displayed for each event, and each event is checked for abnormal behavior. 

 

 
Fig. 13.  Proposed policy flow chart 
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If the event is not on the denylist, Fig. 13 proceeds to detect anomaly. If it turns out to be 

abnormal, check the allowlist database. Events not in the allowlist database are manually 

analyzed by experts. If you check for malicious behavior, you can update the denylist database 

and, if it is a normal event, the allowlist database. Therefore, the allowlist or denylist policy is 

expected to work effectively as many events are fired on the endpoint. 

5. Conclusion 

So far, we have focused on network security. We believed that endpoint security was sufficient 

for vaccines and patches. Unfortunately, security incidents are not diminishing and the damage 

is growing day by day. Therefore, as the number of advanced threats increases, we are rapidly 

moving from past file-based prediction and defense to user behavior-based detection and 

response. Recently, due to the advancement of 5G/IoT, various devices constitute an endpoint 

environment, collecting and analyzing all the actions on the endpoint, and the EDR solution 

for responding to the threat has been in the spotlight. EDR currently collects various events at 

the endpoint, but detecting suspicious events is a difficult reality. In this paper, anti-virus does 

not respond to the initial attack, so deep learning AutoEncoder and 1D-CNN are used to detect 

unknown attacks. The detected attacks are verified using VirusTotal. In addition, various 

policies can be applied for stable and effective operation in the endpoint environment. As an 

example of model operation, we also proposed the operation policy of legacy systems using 

allowlist and denylist. This can greatly improve performance by minimizing false positives. 

The proposed model can be applied to various environments such as IoT, ICS, and cloud as 

well as endpoints. In the future, we plan to verify data and improve models in various 

environments as well as endpoints to ensure continuous operation and practicality. 
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