다양한 분야에서 QR 코드가 급속도로 확산되면서, QR 코드를 악용하여 사용자를 악성 웹사이트로 리디렉션하는 '큐싱(Qshing)'이라는 새로운 형태의 사이버 범죄가 등장했다. 이에 본 연구에서는 일반화 성능을 향상시키기 위해 교차 검증(CV)을 활용하여 QR 코드 스캔과 관련된 악성 URL을 탐지하도록 설계된 스태킹 앙상블 모델을 제안한다. 이러한 통합은 실제 애플리케이션에서 높은 성능을 기대할 수 있도록 설계되었다. 본 연구는 이 모델이 기존의 연구보다 QR 코드 관련 사이버 위협에 대처하는 보다 효과적인 수단을 제공할 것으로 기대한다.
최근 전 세계적으로 사용되는 Microsoft Office 파일에 악성코드를 삽입하는 문서형 악성코드 사례가 증가하고 있다. 문서형 악성코드는 문서 내에 악성코드를 인코딩하여 숨기는 경우가 많기 때문에 백신 프로그램을 쉽게 우회할 수 있다. 이러한 문서형 악성코드를 탐지하기 위해 먼저 Microsoft Office 파일의 형식인 OLE(Object Linking and Embedding) 파일의 구조를 분석했다. Microsoft Office에서 지원하는 기능인 VBA(Visual Basic for Applications) 매크로에 외부 프로그램을 실행시키는 쉘코드, 외부 URL에서 파일을 다운받는 URL 관련 코드 등 다수의 악성코드가 삽입된 것을 확인했다. 문서형 악성코드에서 반복적으로 등장하는 키워드 354개를 선정하였고, 각 키워드가 본문에 등장하는 횟수를 feature 로 정의했다. SVM, naïve Bayes, logistic regression, random forest 알고리즘으로 머신러닝을 수행하였으며, 각각 0.994, 0.659, 0.995, 0.998의 정확도를 보였다.
시간이 지날수록 새로운 맬웨어는 계속 증가하고, 점점 고도화되고 있다. 악성 코드를 진단하기 위해 실행파일에 관한 연구는 다양하게 진행되고 있으나, 비실행 문서파일과 악성 URL, 문서 내 악성 매크로 및 JS 등을 악용하여 이메일에 악성 코드 위협을 내재화한 공격은 탐지하기 어려운 것이 현실이다. 본 논문에서는 악성 이메일 공격의 사전 탐지 및 차단을 통한 이메일 보안을 위해 악성 코드를 분석하는 방법을 소개하고, AI 기반으로 비실행 문서파일의 악성 여부를 판단하는 방법을 제시한다. 다양한 알고리즘 중에 효율적인 학습 모델링 방법을 채택하고 Kubeflow를 활용하여 악성 코드를 진단하는 ML 워크플로 시스템을 제안하고자 한다.
Chuang, Yung-Ting;Melliar-Smith, P. Michael;Moser, Louise E.;Lombera, Isai Michel
Journal of Computing Science and Engineering
/
제6권3호
/
pp.179-192
/
2012
This paper presents novel statistical algorithms for protecting the iTrust information retrieval network against malicious attacks. In iTrust, metadata describing documents, and requests containing keywords, are randomly distributed to multiple participating nodes. The nodes that receive the requests try to match the keywords in the requests with the metadata they hold. If a node finds a match, the matching node returns the URL of the associated information to the requesting node. The requesting node then uses the URL to retrieve the information from the source node. The novel detection algorithm determines empirically the probabilities of the specific number of matches based on the number of responses that the requesting node receives. It also calculates the analytical probabilities of the specific numbers of matches. It compares the observed and the analytical probabilities to estimate the proportion of subverted or non-operational nodes in the iTrust network using a window-based method and the chi-squared statistic. If the detection algorithm determines that some of the nodes in the iTrust network are subverted or non-operational, then the novel defensive adaptation algorithm increases the number of nodes to which the requests are distributed to maintain the same probability of a match when some of the nodes are subverted or non-operational as compared to when all of the nodes are operational. Experimental results substantiate the effectiveness of the detection and defensive adaptation algorithms for protecting the iTrust information retrieval network against malicious attacks.
본 논문에서는 DarkWebGuard라는 실시간 악성 URL 탐지 시스템을 소개하고, 그 개발에 사용된 도구와 알고리즘에 대해 논의합니다. DarkWebGuard는 머신러닝을 기반으로 하며, 인터넷 보안에 대한 현재의 요구를 충족시키기 위해 개발되었습니다. 이 시스템은 사용자와 시스템을 보호하기 위해 악성 URL을 실시간으로 탐지하고 분류합니다.
최근 웹 사이트를 통해 유포되는 웹 기반 악성코드가 심각한 보안이슈로 대두되고 있다. 기존 웹 페이지 크롤링(Crawling) 기반의 중앙 집중식 탐지기법은, 크롤링 수준을 웹 사이트의 하위링크까지 낮출 경우 탐지에 소요되는 비용(시간, 시스템)이 기하급수적으로 증가하는 문제를 가지고 있다. 본 논문에서는 웹 브라우저 이용자가 악성코드 은닉 스크립트가 포함된 웹 페이지에 접속할 경우 이를 동적으로 탐지하여 안전하게 브라우징 해줌으로써, 감염 피해를 예방할 수 있는 웹 브라우저 기반의 탐지도구들 제시하고, 이 도구를 적용한 분산된 웹 브라우저 이용자가 모두 악성코드 은닉 웹 페이지 탐지에 참여하고, 탐지결과를 피드백 함으로써, 웹 사이트의 하부 링크까지 분산적, 동적으로 탐지하고 대응할 수 있는 모델을 제안한다.
QR코드는 간단한 명함이나 URL 등 다양한 형태로 사용되어 왔다. 최근 코로나19 팬데믹의 영향으로 방문 및 출입 기록을 통한 이동 경로를 추적하기 위해 QR코드를 사용하게 되면서 QR코드의 사용량이 급증하였다. 이렇듯 대부분의 사람들이 대중적으로 사용하게 되면서 위협에 항상 노출되어 있다. QR코드의 경우 실행을 하기 전까지 어떠한 행위를 하는지 알 수 없다. 그렇기 때문에 악성URL이 삽입된 QR코드를 아무 의심없이 실행을 하게 되면 보안 위협에 바로 노출되게 된다. 따라서 본 논문에서는 QR코드를 스캔할 때 악성 QR코드인지를 판단한 후 이상이 없을 경우에만 정상적인 접속을 할 수 있는 클라우드 기반 악성 QR코드 탐지 시스템을 제안한다.
최근 모바일 인터넷 이용률이 급증하면서 인터넷 이용자의 웹 브라우저를 통한 사회 공학적 또는 드라이브 바이 다운로드 방식으로 악성코드 유포 공격이 확산되고 있다. 현재 드라이브 바이 다운로드 공격 방어 초점은 최종 다운로드 사이트 및 유포 경로에 초점을 두어 진행되어 왔으나 공격 초기 악성코드를 주입하는 인젝션 사이트에 대한 특성 탐지 및 차단에 대해서는 충분히 연구되지 않았다. 본 논문에서는 이러한 악성 코드 다운로드 공격에 대한 방어메커니즘 향상을 목적으로, 악성코드 다운로드의 핵심 근원지인 인젝션 사이트를 탐지하는 방안에 대해서 연구한다. 결과적으로 악성코드의 확산을 방지하기 위해 다운로드 공격의 최종 사이트를 탐지 및 차단하는 현재의 URL 블랙리스트 기법에 추가하여, 악성코드를 주입하는 인젝션 사이트를 탐지 특징을 추출 하는 방안을 제시한다. 또한 URL 블랙리스트 기반의 접근법과 비교하여 악성코드 감염률을 효율적으로 최소화 할 수 있는 방안임을 보인다.
최근 DDoS공격용 좀비, 기업정보 및 개인정보 절취 등 각종 사이버 테러 및 금전적 이윤 획득의 목적으로 웹사이트를 해킹, 악성코드를 은닉함으로써 웹사이트 접속PC를 악성코드에 감염시키는 공격이 지속적으로 증가하고 있으며 은닉기술 및 회피기술 또한 지능화 전문화되고 있는 실정이다. 악성코드가 은닉된 웹사이트를 탐지하기 위한 현존기술은 BlackList 기반 패턴매칭 방식으로 공격자가 악성코드의 문자열 변경 또는 악성코드를 변경할 경우 탐지가 불가능하여 많은 접속자가 악성코드 감염에 노출될 수 밖에 없는 한계점이 존재한다. 본 논문에서는 기존 패턴매칭 방식의 한계점을 극복하기 위한 방안으로 WhiteList 기반의 악성코드 프로세스 행위분석 탐지기술을 제시하였다. 제안방식의 실험 결과 현존기술인 악성코드 스트링을 비교하는 패턴매칭의 MC-Finder는 0.8%, 패턴매칭과 행위분석을 동시에 적용하고 있는 구글은 4.9%, McAfee는 1.5%임에 비해 WhiteList 기반의 악성코드 프로세스 행위분석 기술은 10.8%의 탐지율을 보였으며, 이로써 제안방식이 악성코드 설치를 위해 악용되는 웹 사이트 탐지에 더욱 효과적이라는 것을 증명할 수 있었다.
Park, Hweerang;Cho, Sang-Il;Park, Jungkyu;Cho, Youngho
한국컴퓨터정보학회논문지
/
제24권5호
/
pp.27-33
/
2019
One of serious security threats is a botnet-based attack. A botnet in general consists of numerous bots, which are computing devices with networking function, such as personal computers, smartphones, or tiny IoT sensor devices compromised by malicious codes or attackers. Such botnets can launch various serious cyber-attacks like DDoS attacks, propagating mal-wares, and spreading spam e-mails over the network. To establish a botnet, attackers usually inject malicious URLs into web source codes stealthily by using data hiding methods like Javascript obfuscation techniques to avoid being discovered by traditional security systems such as Firewall, IPS(Intrusion Prevention System) or IDS(Intrusion Detection System). Meanwhile, it is non-trivial work in practice for software developers to manually find such malicious URLs which are hidden in numerous web source codes stored in web servers. In this paper, we propose a security defense system to discover such suspicious, malicious URLs hidden in web source codes, and present experiment results that show its discovery performance. In particular, based on our experiment results, our proposed system discovered 100% of URLs hidden by Javascript encoding obfuscation within sample web source files.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.