• Title/Summary/Keyword: Malicious Process

Search Result 197, Processing Time 0.035 seconds

GOPES: Group Order-Preserving Encryption Scheme Supporting Query Processing over Encrypted Data

  • Lee, Hyunjo;Song, Youngho;Chang, Jae-Woo
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1087-1101
    • /
    • 2018
  • As cloud computing has become a widespread technology, malicious attackers can obtain the private information of users that has leaked from the service provider in the outsourced databases. To resolve the problem, it is necessary to encrypt the database prior to outsourcing it to the service provider. However, the most existing data encryption schemes cannot process a query without decrypting the encrypted databases. Moreover, because the amount of the data is large, it takes too much time to decrypt all the data. For this, Programmable Order-Preserving Secure Index Scheme (POPIS) was proposed to hide the original data while performing query processing without decryption. However, POPIS is weak to both order matching attacks and data count attacks. To overcome the limitations, we propose a group order-preserving data encryption scheme (GOPES) that can support efficient query processing over the encrypted data. Since GOPES can preserve the order of each data group by generating the signatures of the encrypted data, it can provide a high degree of data privacy protection. Finally, it is shown that GOPES is better than the existing POPIS, with respect to both order matching attacks and data count attacks.

Attack-Proof Cooperative Spectrum Sensing Based on Consensus Algorithm in Cognitive Radio Networks

  • Liu, Quan;Gao, Jun;Guo, Yunwei;Liu, Siyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1042-1062
    • /
    • 2010
  • Cooperative spectrum sensing (CSS) is an effective technology for alleviating the unreliability of local spectrum sensing due to fading/shadowing effects. Unlike most existing solutions, this paper considers the use of CSS technology in decentralized networks where a fusion center is not available. In such a decentralized network, some attackers may sneak into the ranks of cooperative users. On the basis of recent advances in bio-inspired consensus algorithms, an attack-proof, decentralized CSS scheme is proposed in which all secondary users can maintain cooperative sensing by exchanging information locally instead of requiring centralized control or data fusion. Users no longer need any prior knowledge of the network. To counter three potential categories of spectrum sensing data falsification (SSDF) attacks, some anti-attack strategies are applied to the iterative process of information exchange. This enables most authentic users to exclude potentially malicious users from their neighborhood. As represented by simulation results, the proposed scheme can generally ensure that most authentic users reach a consensus within the given number of iterations, and it also demonstrates much better robustness against different SSDF attacks than several existing schemes.

Dynamic Trust Model Based on Extended Subjective Logic

  • Junfeng, Tian;Jiayao, Zhang;Peipei, Zhang;Xiaoxue, Ma
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3926-3945
    • /
    • 2018
  • In Jøsang's trust model, trust evaluation is obtained through operators, but there are problems with the mutuality and asymmetry of trust and the impact of event weight on trust evaluation. Trust evaluation is updated dynamically and continuously with time and the process of interactions, but it has not been reflected in Jøsang's model. Therefore, final trust evaluation is not accurate, and malicious fraud cannot be prevented effectively. This causes the success rate of interaction to be low. To solve these problems, a new dynamic trust model is proposed based on extended subjective logic (DTM-ESL). In DTM-ESL, the event weight and the mutuality of trust are fully considered, the original one-way trust relationship is extended to a two-way trust relationship, discounting and consensus operators are improved, and trust renewal is designed based on event weight. The viability and effectiveness of this new model are verified by simulation experiments.

A Hardware Architecture of Multibyte-based Regular Expression Pattern Matching for NIDS (NIDS를 위한 다중바이트 기반 정규표현식 패턴매칭 하드웨어 구조)

  • Yun, Sang-Kyun;Lee, Kyu-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1B
    • /
    • pp.47-55
    • /
    • 2009
  • In recent network intrusion detection systems, regular expressions are used to represent malicious packets. In order to process incoming packets through high speed networks in real time, we should perform hardware-based pattern matching using the configurable device such as FPGAs. However, operating speed of FPGAs is slower than giga-bit speed network and so, multi-byte processing per clock cycle may be needed. In this paper, we propose a hardware architecture of multi-byte based regular expression pattern matching and implement the pattern matching circuit generator. The throughput improvements in four-byte based pattern matching circuit synthesized in FPGA for several Snort rules are $2.62{\sim}3.4$ times.

Threats according to the Type of Software Updates and White-List Construction Scheme for Advanced Security (소프트웨어 업데이트 유형별 위협요소와 안전성 강화를 위한 화이트리스트 구성 방안)

  • Lee, Daesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1369-1374
    • /
    • 2014
  • In case of APT attacks, the update server is being used as a means of dissemination, the update program is running malicious code or data in applications such as anti-virus signature is vulnerable to manipulation, SW Update threat identification and prevention measures are urgently required. This paper presents a natiional and international SW update structure, update process exploits and response measures to examine, Through the extraction/analysis of a domestic famous SW update log, we are willing to select the necessary component of the normal program update to identify a white list.

Ensuring Anonymity for LBSs in Smartphone Environment

  • Alzaabi, Mohammed;Yeun, Chan-Yeob;Martin, Thomas Anthony
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.121-136
    • /
    • 2011
  • With the rapid growth of GPS-enable Smartphones, the interest on using Location Based Services (LBSs) has increased significantly. The evolution in the functionalities provided by those smartphones has enabled them to accurately pinpoint the location of a user. Because location information is what all LBSs depend on to process user's request, it should be properly protected from attackers or malicious service providers (SP). Additionally, maintaining user's privacy and confidentiality are imperative challenges to be overcome. A possible solution for these challenges is to provide user anonymity, which means to ensure that a user initiating a request to the SP should be indistinguishable from a group of people by any adversary who had access to the request. Most of the proposals that maintain user's anonymity are based on location obfuscation. It mainly focuses on adjusting the resolution of the user's location information. In this paper, we present a new protocol that is focused on using cryptographic techniques to provide anonymity for LBSs users in the smartphone environment. This protocol makes use of a trusted third party called the Anonymity Server (AS) that ensures anonymous communication between the user and the service provider.

Tools for Web-Based Security Management Level Analysis (웹기반 보안 관리 수준 분석 도구)

  • Kim, Jeom-Goo;Choi, Kyong-Ho;Noh, Si-Choon;Lee, Do-Hyeon
    • Convergence Security Journal
    • /
    • v.12 no.3
    • /
    • pp.85-92
    • /
    • 2012
  • Today, the typical web hacking attacks are cross-site scripting(XSS) attacks, injection vulnerabilities, malicious file execution and insecure direct object reference included. Web hacking security systems, access control solutions, access only to the web service and flow inside but do not control the packet. So you have been illegally modified to pass the packet even if the packet is considered as a unnormal packet. The defense system is to fail to appropriate controls. Therefore, in order to ensure a successful web services diagnostic system development is necessary. Web application diagnostic system is real and urgent need and alternative. The diagnostic system development process mu st be carried out step of established diagnostic systems, diagnostic scoping web system vulnerabilities, web application, analysis, security vulnerability assessment and selecting items. And diagnostic system as required by the web system environment using tools, programming languages, interfaces, parameters must be set.

A Study on the Effect of Format String on Secure Programming in C Language (C언어에서 포맷 스트링이 프로그램 보안에 미치는 영향)

  • Lee, Hyung-Bong;Cha, Hong-Jun;Choi, Hyung-Jin
    • The KIPS Transactions:PartC
    • /
    • v.8C no.6
    • /
    • pp.693-702
    • /
    • 2001
  • One of the major characteristics of C language is that it allows us to use pointer type variables to access any area of virtual address space. So, we can read/write/execute from/to virtual memory area not controlled delicately by operating system. We can access such memory area by using format string and it can be a vulnerability of C language from the point of secure programming. In this paper, we analyze in detail the process of security attack based on format string and then exploit a new virus style attack which is stepwise and durable with some actual scenarios to warn the severity of it, and grope for some preliminary responding actions.

  • PDF

Development of field programmable gate array-based encryption module to mitigate man-in-the-middle attack for nuclear power plant data communication network

  • Elakrat, Mohamed Abdallah;Jung, Jae Cheon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.780-787
    • /
    • 2018
  • This article presents a security module based on a field programmable gate array (FPGA) to mitigate man-in-the-middle cyber attacks. Nowadays, the FPGA is considered to be the state of the art in nuclear power plants I&C systems due to its flexibility, reconfigurability, and maintainability of the FPGA technology; it also provides acceptable solutions for embedded computing applications that require cybersecurity. The proposed FPGA-based security module is developed to mitigate information-gathering attacks, which can be made by gaining physical access to the network, e.g., a man-in-the-middle attack, using a cryptographic process to ensure data confidentiality and integrity and prevent injecting malware or malicious data into the critical digital assets of a nuclear power plant data communication system. A model-based system engineering approach is applied. System requirements analysis and enhanced function flow block diagrams are created and simulated using CORE9 to compare the performance of the current and developed systems. Hardware description language code for encryption and serial communication is developed using Vivado Design Suite 2017.2 as a programming tool to run the system synthesis and implementation for performance simulation and design verification. Simple windows are developed using Java for physical testing and communication between a personal computer and the FPGA.

Secure and Efficient Privacy-Preserving Identity-Based Batch Public Auditing with Proxy Processing

  • Zhao, Jining;Xu, Chunxiang;Chen, Kefei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.1043-1063
    • /
    • 2019
  • With delegating proxy to process data before outsourcing, data owners in restricted access could enjoy flexible and powerful cloud storage service for productivity, but still confront with data integrity breach. Identity-based data auditing as a critical technology, could address this security concern efficiently and eliminate complicated owners' public key certificates management issue. Recently, Yu et al. proposed an Identity-Based Public Auditing for Dynamic Outsourced Data with Proxy Processing (https://doi.org/10.3837/tiis.2017.10.019). It aims to offer identity-based, privacy-preserving and batch auditing for multiple owners' data on different clouds, while allowing proxy processing. In this article, we first demonstrate this scheme is insecure in the sense that malicious cloud could pass integrity auditing without original data. Additionally, clouds and owners are able to recover proxy's private key and thus impersonate it to forge tags for any data. Secondly, we propose an improved scheme with provable security in the random oracle model, to achieve desirable secure identity based privacy-preserving batch public auditing with proxy processing. Thirdly, based on theoretical analysis and performance simulation, our scheme shows better efficiency over existing identity-based auditing scheme with proxy processing on single owner and single cloud effort, which will benefit secure big data storage if extrapolating in real application.