• Title/Summary/Keyword: Major intersection

Search Result 91, Processing Time 0.026 seconds

ACCELERATED CONSTRUCTION OF URBAN INTERSECTIONS WITH PORTLAND CEMENT CONCRETE PAVEMENT (PCCP)

  • Kamran M. Nemati
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.886-891
    • /
    • 2005
  • The frequent maintenance required on some asphalt concrete (AC) pavement sections has made reconstruction with Portland Cement Concrete Pavement (PCCP) a feasible alternative. However, many constructability issues need to be addressed in order to realize the full potential of this alternative. Accelerated paving encompasses three classes of activities: methods to accelerate the rate of strength gain, methods to minimize the construction time, and traffic control strategies to minimize user delay. Three major AC intersections with severe rutting problems were reconstructed with PCCP. The entire reconstruction of each intersection, including demolition of the AC pavement and its replacement with PCCP, took place over a period of three days, starting on Thursday evening and opening the intersection to the traffic on Sunday afternoon. This paper discusses the use of PCCP for accelerated reconstruction of major urban intersections with minimal user and traffic disruption, using innovative construction techniques and traffic management optimization principles and demonstrates that concrete pavements can be constructed efficiently and quickly.

  • PDF

Operation Analysis of Downstream Intersections at Urban Freeway Off-ramps (도시고속도로 진출램프 하류부교차로 운영 분석 (중동 IC 사례 분석을 중심으로))

  • Jeon, Jae-Hyeon;Kim, Young-Chan;Jeoung, Young-Je
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.7-16
    • /
    • 2008
  • Severe congestion is happening at urban freeway off-ramps in Seoul. Major causes of congestion at off-ramps are a shortage of capacity and inefficient signal operations at the downstream intersection at off-ramps. It is necessary to control congestion by improving design or operations in the downstream intersection. In this study, the authors analyzed the case of the Jungdong interchange that was improved for design in the downstream intersection. When a freeway and an arterial road cross, diamond interchanges are usually selected with a single-point urban interchange (SPUI) as an alternative. To compare the effectiveness of a diamond interchange with a SPUI, the authors applied these two configurations to the Jungdong interchange using a simulation. The result of the analysis shows that congestion at off-ramps in diamond interchanges can be reduced by improving signal operations such as the application of "4 phase with overlaps" and that diamond interchanges are more efficient than a SPUI with a frontage road. Efficient operation of the downstream intersection by these findings can minimize congestion of not only the downstream intersection but also the freeway mainline.

Training Sample of Artificial Neural Networks for Predicting Signalized Intersection Queue Length (신호교차로 대기행렬 예측을 위한 인공신경망의 학습자료 구성분석)

  • 한종학;김성호;최병국
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.75-85
    • /
    • 2000
  • The Purpose of this study is to analyze wether the composition of training sample have a relation with the Predictive ability and the learning results of ANNs(Artificial Neural Networks) fur predicting one cycle ahead of the queue length(veh.) in a signalized intersection. In this study, ANNs\` training sample is classified into the assumption of two cases. The first is to utilize time-series(Per cycle) data of queue length which would be detected by one detector (loop or video) The second is to use time-space correlated data(such as: a upstream feed-in flow, a link travel time, a approach maximum stationary queue length, a departure volume) which would be detected by a integrative vehicle detection systems (loop detector, video detector, RFIDs) which would be installed between the upstream node(intersection) and downstream node. The major findings from this paper is In Daechi Intersection(GangNamGu, Seoul), in the case of ANNs\` training sample constructed by time-space correlated data between the upstream node(intersection) and downstream node, the pattern recognition ability of an interrupted traffic flow is better.

  • PDF

The Operation Analysis of Signalized Intersections Using ICU Method (ICU 방법을 활용한 신호교차로 운영분석)

  • Kim, Young Chan;Jeon, Jae Hyeon;Jeong, Young Je;Kim, Eun Jeoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.41-48
    • /
    • 2009
  • The capacity analysis of signalized intersection usually includes a HCM method used at home and abroad and a ICU method this study presents. The HCM method focuses on operation analysis measuring an intersection's delay in terms of given traffic volume, signal operation, and intersection structure data. This method includes planning and design analysis, but these analyses are complex due to being possible through repetitive operation analysis. However the ICU method is a powerful tool for planning and design analysis, because these are possible through brief traffic volume and geometry structure data and consider minimum green time. In this study, the authors studied the ICU method and compared the HCM and ICU by analyzing traffic volume scenarios. Also to consider effectiveness for application of the ICU method, the authors applied the ICU to capacity analysis of intersections on urban arterial for setting major intersection and effect analysis for changing crosswalk type, the number of lane, lane use and operation form of left turn. The result of the analyses shows that the ICU method can measure correct capacity of intersection consist of a broad road in urban area, and is effective for planning and design analysis. This study is expected that traffic experts can grasp correct intersection's capacity and carry out a proper planning or improvement by applying the ICU method to planning and design analysis.

A Study on the Applicability and Introduction Standards of Cut-through Roundabouts (직결형 회전교차로의 적용 가능성과 도입 기준에 관한 연구)

  • KIM, Ju Hyun;SHIN, Eon Kyo;KIM, Jun;KWON, Minyoung
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.5
    • /
    • pp.449-464
    • /
    • 2016
  • The purpose of this study is to test applicability of cut-through roundabouts at a congested intersection and to provide the traffic volume ranges for theirs application. Various test scenarios were developed according to variation of total traffic volume, left-turn ratio to total traffic volume, and ratio of major road traffic volume to minor road traffic volume. In addition, three intersection types of cut-through roundabout, roundabout, and signalized intersection were compared with respect to delay times for each scenario, resulted from the simulation using VISSIM. In case of the ratio of major road traffic volume to minor road traffic volume, 6:4, the delay times of cut-through roundabout decreased up to 30% of left-turn ratio to total traffic volume for 400vphpl, up to 20% for 500vphpl, up to 10% for 600vphpl. In case of the ratio, 7:3, they are the same as 6:4 for 400vphpl, 500vphpl, and 600vphpl but they decreased up to 30% for 300vphpl and up to 10% for 700vphpl. In case of the ratio, 8:2, they are the same as 7:3 for 400vphpl, 500vphpl, and 700vphpl but they were reduced by 10% to 30% for 300vphpl and 20% for 600vphpl. It is concluded that the smaller left-turn ratio to total traffic volume as well as the ratio of minor road traffic volume to major road traffic volume is, the more effective in reducing delay times the cut-through roundabout is. Cut-through roundabouts can be expected to reduce delay times at a signalized intersections with traffic conditions above-mentioned.

Traffic Accident Models using a Random Parameters Negative Binomial Model at Signalized Intersections: A Case of Daejeon Metropolitan Area (Random Parameters 음이항 모형을 이용한 신호교차로 교통사고 모형개발에 관한 연구 -대전광역시를 대상으로 -)

  • Park, Minho;Hong, Jungyeol
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.119-126
    • /
    • 2018
  • PURPOSES : The purpose of this study is to develop a crash prediction model at signalized intersections, which can capture the randomness and uncertainty of traffic accident forecasting in order to provide more precise results. METHODS : The authors propose a random parameter (RP) approach to overcome the limitation of the Count model that cannot consider the heterogeneity of the assigned locations or road sections. For the model's development, 55 intersections located in the Daejeon metropolitan area were selected as the scope of the study, and panel data such as the number of crashes, traffic volume, and intersection geometry at each intersection were collected for the analysis. RESULTS : Based on the results of the RP negative binomial crash prediction model developed in this study, it was found that the independent variables such as the log form of average annual traffic volume, presence or absence of left-turn lanes on major roads, presence or absence of right-turn lanes on minor roads, and the number of crosswalks were statistically significant random parameters, and this showed that the variables have a heterogeneous influence on individual intersections. CONCLUSIONS : It was found that the RP model had a better fit to the data than the fixed parameters (FP) model since the RP model reflects the heterogeneity of the individual observations and captures the inconsistent and biased effects.

Understanding Driver Compliance Behaviour at Signalised Intersection for Developing Conceptual Model of Driving Simulation

  • Aznoora Osman;Nadia Abdul Wahab;Haryati Ahmad Fauzi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.142-150
    • /
    • 2024
  • A conceptual model represents an understanding of a system that is going to be developed, which in this research, a driving simulation software to study driver behavior at signalised intersections. Therefore, video observation was conducted to study driver compliance behaviour within the dilemma zone at signalised intersection, with regards to driver's distance from the stop line during yellow light interval. The video was analysed using Thematic Analysis and the data extracted from it was analysed using Chi-Square Independent Test. The Thematic Analysis revealed two major themes which were traffic situation and driver compliance behaviour. Traffic situation is defined as traffic surrounding the driver, such as no car in front and behind, car in front, and car behind. Meanwhile, the Chi-Square Test result indicates that within the dilemma zone, there was a significant relationship between driver compliance behaviour and driver's distance from the stop line during yellow light interval. The closer the drivers were to the stop line, the more likely they were going to comply. In contrast, drivers showed higher non-compliant behavior when further away from stop line. This finding could help in the development of conceptual model of driving simulation with purpose in studying driver behavior.

Development of Travel Time Functions Considering Intersection Delay (교차로 지체를 고려한 통행시간함수 개발)

  • Oh, Sang-Jin;Park, Sang-Hyuk;Park, Byung-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.63-76
    • /
    • 2008
  • The goals of this study are to develop travel time functions based on intersection delay and to analyze the applicability of the functions to traffic assignment models. The study begins with the premise that the existing assignment models can not effectively account for intersection delay time. In pursuing the goals, this study gives particular attention to dividing the link travel time into link moving time and stopped time at node, making the models based on such variables as the travel speed, volume, geometry, and signal data of signalized intersections in Cheongju, and analyzing the applicability of these models to traffic assignment. There are several major findings. First, the study presents the revised percentage of lanes (considering type of intersection) instead of g/C for calculating intersection delay, which is analyzed to be significant in the paired t-test. Second, the assigned results of applying these models to the Cheongju network in EMME/2 are compared with the data observed from a test car survey in Cheongju. The analyses show that the BPR models do not consider the intersection delay, but the modified uniform delay model and modified Webster model are comparatively well fitted to the observed data. Finally, the assigned results of applying these models are statistically compared with the test car survey data in assigned volume, travel time, and average speed. The results show that the estimates from the divided travel time model are better fitted to observed data than those from the BPR model.

A Development of Traffic Accident Models at 4-legged Signalized Intersections using Random Parameter : A Case of Busan Metropolitan City (Random Parameter를 이용한 4지 신호교차로에서의 교통사고 예측모형 개발 : 부산광역시를 대상으로)

  • Park, Minho;Lee, Dongmin;Yoon, Chunjoo;Kim, Young Rok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.65-73
    • /
    • 2015
  • PURPOSES : This study tries to develop the accident models of 4-legged signalized intersections in Busan Metropolitan city with random parameter in count model to understanding the factors mainly influencing on accident frequencies. METHODS : To develop the traffic accidents modeling, this study uses RP(random parameter) negative binomial model which enables to take account of heterogeneity in data. By using RP model, each intersection's specific geometry characteristics were considered. RESULTS : By comparing the both FP(fixed parameter) and RP modeling, it was confirmed the RP model has a little higher explanation power than the FP model. Out of 17 statistically significant variables, 4 variables including traffic volumes on minor roads, pedestrian crossing on major roads, and distance of pedestrian crossing on major/minor roads are derived as having random parameters. In addition, the marginal effect and elasticity of variables are analyzed to understand the variables'impact on the likelihood of accident occurrences. CONCLUSIONS : This study shows that the uses of RP is better fitted to the accident data since each observations'specific characteristics could be considered. Thus, the methods which could consider the heterogeneity of data is recommended to analyze the relationship between accidents and affecting factors(for example, traffic safety facilities or geometrics in signalized 4-legged intersections).

System Reliability Analysis for Multiple Failure Modes of Piezoelectric Energy Harvester Using Generalized Complementary Intersection Method (Generalized Complementary Intersection Method를 이용한 압전 에너지 수확 장치의 다중 파손모드에 대한 시스템 신뢰성 해석)

  • Yoon, Heonjun;Youn, Byeng D.;Kim, Heung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.544-544
    • /
    • 2014
  • Energy harvesting technology, which scavenges electric power from ambient, otherwise wasted, energy sources, has been explored to develop self-powered wireless sensors and possibly eliminate the battery replacement cost for wireless sensors. Among ambient energy sources, vibration energy can be converted into electric power through a piezoelectric energy harvester. For the last decade, although tremendous advances have been made in design methodology to maximize harvestable electric power under a given vibration condition, the research in reliability assessment to ensure durability has been stagnant due to the complicated nature of the multiple failure modes of a piezoelectric energy harvester, such as the interfacial delamination, fatigue failure, and dynamic fracture. Therefore, this study presents the first-ever system reliability analysis for multiple failure modes of a piezoelectric energy harvester using the Generalized Complementary Intersection Method (GCIM), while accounts for the energy conversion performance. The GCIM enables to decompose the probabilities of high-order joint failure events into probabilities of complementary intersection events. The electromechanically-coupled analytical model is implemented based on the Kirchhoff plate theory to analyze its output performances of a piezoelectric energy harvester. Since a durable as well as efficient design of a piezoelectric energy harvester is significantly important in sustainably utilizing self-powered electronics, we believe that technical development on system reliability analysis will have an immediate and major impact on piezoelectric energy harvesting technology.

  • PDF