• Title/Summary/Keyword: Major Crack

Search Result 288, Processing Time 0.03 seconds

Probabilistic Analysis of Flaw Distribution on Structure Under Cyclic Load (피로하중을 받는 구조물의 결함분포에 대한 확률론적 해석)

  • Kwak, Sang-Log;Choi, Young-Hwan;Kim, Hho-Jung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.604-609
    • /
    • 2003
  • Flaw geometries, applied stress, and material properties are major input variables for the fracture mechanics analysis. Probabilistic approach can be applied for the consideration of uncertainties within these input variables. But probabilistic analysis requires many assumptions due to the lack of initial flaw distributions data. In this study correlations are examined between initial flaw distributions and in-service flaw distributions on structures under cyclic load. For the analysis, LEFM theories and Monte Carlo simulation are applied. Result shows that in-service flaw distributions are determined by initial flaw distributions rather than fatigue crack growth rate. So initial flaw distribution can be derived from in-service flaw distributions.

  • PDF

FRACTURE ANALYSIS OF REINFORCED CONCRETE BEAMS FALING IN SHEAR (전단에 파괴되는 철근콘크리트 보의 해석적 연구)

  • 김우종
    • Computational Structural Engineering
    • /
    • v.1 no.2
    • /
    • pp.111-120
    • /
    • 1988
  • The behavior of shear crack is investigated analytically to get a better understanding of the fundamental natura of shear failure mechanism in reinforced concrete beams. Emphasis is placed on the exploration of the major cause of the initiation and the propagation of an inclined shear crack in reinforced concrete beams without web reinforcement. By utilizing a finite element method incorporated into a fracture mechanics, the quantitative reponse of reinforced concrete beams with varying amounts of cracking is examined. Progressions of the cracks are simulated. The analysis gives the information of the state of the stresses at various cracking stages. The results are compared with the experimental results.

  • PDF

A Study on the Grinding Characteristics of Stainless Steel Using Intermittent Grinding Wheel (단속 연삭지석에 의한 스테인레스강의 연삭특성에 관한 연구)

  • Kweun, O-Byung;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2866-2874
    • /
    • 1996
  • In the grinding of difficult-to-materials, the major problmes of conventional grinding are grinding burn, wheel wear, grinding surface crack, loading and glazing, When a conventioanl grinding wheel is used, wheel wear and grinding surface crack easily occur in low heat conductive material and annealed steel. Intermittent grinding is suitable for diffcult-to-matrical such as stainless steel, titanium alloy, aluminum alloy and copper alloy. The purpose of this paper is to develop a new type intermittent wheel of the grinding system for improving the problem of stainless steel grinding, to observe the effect of intermittent grinding on surface quality and grinding characteristics of stainless steel grinding using intermittent grinding wheel. The characteristics of intermittent grinding system improve surface quality, low grinding temperature and low loading.

Efficiency Assessment of Crack Maintenance Material Using Ultra Fine Cement (초미립자시멘트를 이요한 균열보수재 성능평가 연구)

  • 백인관;박현수;정란
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1095-1100
    • /
    • 2000
  • Concrete structure often exhibit cracks due to the combination of material construction and design error. Minor crack can be tolerated depending on exposure condition, but major cracks are aesthetically unpleasant and affect the durability and safety of the structure. All of the reinforced concrete structure have many inevitable cracks for various reason such as drying shrinkage, heat liberation of cement and over loads. Epoxy resin injection widely used for repairing cracks in concrete is too sensitive to high temperature. Besides, the problem in the epoxy resin injection is the difficulty of quality control after execution. Whereas, Ultra Fine Cement is similar in coefficient of thermal expansion and modulus of elasticity to concrete. The objective of the study is to find out that it is possible for Ultra Fine Cement to be used for repairing cracks in reinforced concrete.

Study for resistance Plastic Shringage Cracking and apply field of Cellulose Fiber Reinforced Concrete (셀룰로스 섬유의 소성수축균열 저항성과 현장적용에 관한연구)

  • Park, Sung-Woo;Kim, Kyu-Yong;Yun, Sung-Hoon;Kwon, Yong-Joo;Kim, Dae-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.699-702
    • /
    • 2004
  • Plastic shrindage cracking occurs at the exposed surfaces of freshly placed concrete due to consoilidation of the concrete mass and rapid evaporation of water from the surface. This so called shrindage craking is a major concern for concrete, especially for been performed to obtain the plastic shrindage porperties of cellolus fiber reinforced concrete. The results of tests of the cellolus fiber were compared with plain and polypropylene fibers. Test results indicated that cellolus fiber reinforcement showed an aility to reduce the total crack area and maximum crack width significantly.

  • PDF

Properties of Plastic Shrinkage Crack Occurrence on The LMC Bridge Deck Overlays (LMC(Latex Modified Concrete) 교면포장에서의 소성수축 균열발생 특성)

  • Park, Sung-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.265-268
    • /
    • 2004
  • Plastic shrinkage cracking is a major concern for concrete, especially for flat structures as highway pavement, bridge deck slabs, and bridge deck pavement. LMC(Latex Modified Concrete) be used mainly for bridge deck overlays, so occurrence possibility of plastic shrinkage cracking is very high. But LMC is form a close-packed layer of polymer particles in very early time from the time of adds the latex and water. So plastic shrinkage cracking compare with normal concrete is not occur at final setting time. Results indicates that LMC is advantage to prevent occurrence of plastic shrinkage crack and it's possible co construction for bridge deck overlay effectively.

  • PDF

A Study on the Safety Evaluation of Design for Piping Materials(III) (배관용 재료의 설계시 안전성 평가에 관한 연구(III))

  • 김복기
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 1996
  • For the assessment of fracture behaviors of structural components, various fracture mechanics parameters have been applied to date. New approaches to analyze structural fracture performance under elastic-plastic condition have been proposed by the development of testing methods for characterization of material behavior which is defying to the analysis by conventional fracture parameters. In this study, on the assumption that, initiation of crack propagation of a piping materials occurs when the crack tip strain field reaches "the local fracture strain", following two major issues are discussed ; 1) The relationship between the critical value of J-integral($J_{IC}$) and the local fracture strain (${\varepsilon}_c$) in uniaxial tensile test in the region of maximum reduction area was described. 2) To proved the validity of above relations a series of tests were performed under various temperature and on the different piping materials.materials.

  • PDF

CAE based risk prediction for sharp edge improvement (샤프엣지 개선을 위한 해석적 리스크 검토법)

  • Nam, Byeung Gun;Park, Shin Hee;Kim, Hyun Sup
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.36-42
    • /
    • 2014
  • In order to prevent the sharp edge during the side impact, a cause analysis and CAE based risk prediction were carried out in this study. It was found that sharp edge occurs mainly because of stiffness difference between the major parts and structural stress concentration. It could be improved by directly reinforcing the crack initiation region or by weakening the joints connecting the parts. The fracture criterion based on major in-plain strain was suggested and the risk prediction process for sharp edge prevention was established.

Cracking Behavior of RC Tension Members Reinforced with Amorphous Steel Fibers (비정질 강섬유로 보강된 철근콘크리트 인장부재의 균열거동)

  • Park, Kyoung-Woo;Lee, Jun-Seok;Kim, Woo;Kim, Dae-Joong;Lee, Gi-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.475-482
    • /
    • 2014
  • This paper presents the experimental results concentrically reinforced concrete tension members and compares cracking behavior of amorphous steel fiber and normal steel fiber reinforced concrete members. Two kind of steel fibers were included as a major experimental parameter together with the six cover thickness to bar diameter ratio ($c/d_b$). The presence of amorphous steel fibers effectively controlled the splitting cracks initation and propagation. In the amorphous steel fiber reinforced specimens, no splitting cracks were observed that becomes higher with cover thickness to bar diameter ratio is 2.0. Crack spacing of the each specimens reinforced with amorphous steel fibers and normal steel fibers becomes larger with the increase in cover thickness, and also measured maximum and average crack spacing are significantly smaller than current design code provision. Based on the measured crack spacings, a relationships for predicting the crack spacing is proposed using the measured average crack spacing in amorphous steel fiber reinforced concrete tension members.

Stress Intensity Factor of Cracked Plates with Bonded Composite Patch by p-Convergence Based Laminated Plate Theory (p-수렴 적층 평판이론에 의한 균열판의 팻취보강후 응력확대계수 산정)

  • Woo, Kwang-Sung;Han, Sang-Hyun;Yang, Seung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.649-656
    • /
    • 2008
  • The enhancement of the service life of damaged or cracked structures is a major issue for researchers and engineers. The hierarchic void element based on the integrals of Legendre polynomials is used to characterize the fracture behaviour of unpatched crack as well as repaired crack with bonded composite patches by computing the stress intensity factors and stress contours at the crack tip. Since the equivalent single layer approach is adopted in this study, the proposed element is necessary to represent a discontinuous crack part as a continuum body with zero stiffness. Thus the aspect ratio of this element to represent the crack should be extremely slender. The sensitivity of numerical solution with respect to energy release rate, displacement and stress has been tested to show the robustness of zero stiffness element as the aspect ratio is increased up to 2000. The stiffness derivative method and displacement extrapolation method have been applied to calculate the stress intensity factors of Mode I problem. It is noted that the proposed hierarchical void element can be one of alternatives to analyze the patched crack problems.