• 제목/요약/키워드: Maintainability Prediction

검색결과 14건 처리시간 0.029초

무기체계의 상세설계 단계에 적용을 위한 한국형 정비도 예측 S/W 개발 (Development of Korean Maintainability-Prediction Software for Application to the Detailed Design Stages of Weapon Systems)

  • 권재언;김수주;허장욱
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.102-111
    • /
    • 2021
  • Maintainability is a major design parameter that includes availability as well as reliability in a RAM (reliability, availability, maintainability) analysis, and is an index that must be considered when developing a system. There is a lack of awareness of the importance of predicting and analyzing maintainability; therefore, it is dependent on past-experience data. To improve the utilization rate, maintainability must be managed as a key indicator to meet the user's requirements for failure maintenance time and to reduce life-cycle costs. To improve the maintainability-prediction accuracy in the detailed design stage, we present a maintainability-prediction method that applies Method B of the Military Standardization Handbook (MIL-HDBK-472) Procedure V, as well as a Korean maintainability-prediction software package that reflects the system complexity.

항공기용 유압 시스템 신뢰도 및 정비도 분석 프로세스 고찰 (A Study on the Reliability and Maintainability Analysis Process for Aircraft Hydraulic System)

  • 한창환;김근배
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.105-112
    • /
    • 2016
  • An aircraft must be designed to minimize system failure rate for obtaining the aircraft safety, because the aircraft system failure causes a fatal accident. The safety of the aircraft system can be predicted by analyzing availability, reliability, and maintainability of the system. In this study, the reliability and the maintainability of the hydraulic system are analysed except the availability, and therefore the reliability and the maintainability analysis process and the results are presented for a helicopter hydraulic system. For prediction of the system reliability, the failure rate model presented in MIL-HDBK-217F is used, and MTBF is calculated by using the Part Stress Analysis Prediction and quality/temperature/environmental factors described in NPRD-95 and MIL-HDBK-338B. The maintainability is predicted by FMECA(Failure Mode, Effect & Criticality Analysis) based on MIL-STD-1629A.

수중무기 체계의 정비 시간 예측 (On the Maintenance Time Prediction of an Underwater Military System)

  • 신주환;김상부;윤원영
    • 산업공학
    • /
    • 제11권1호
    • /
    • pp.175-182
    • /
    • 1998
  • The maintainability prediction of an underwater military system is considered. A general and parctical prediction method for maintainability using MIL-HDBK-472 is presented. We develop a computer program to predict MTTR of an underwater military system. A case study is made to explain the proposed maintainability prediction method.

  • PDF

열차제어시스템 유지보수도예측 및 입증에 관한 연구 (A Study on the Maintainability Prediction and Demonstration)

  • 신덕호;이재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.56-58
    • /
    • 2005
  • This paper for the Train control system which has been used in the railway system for the purpose of headway control is regarded as safety-critical system, which is based on embedded controller. Therefore, for the maintainability, the maintenance time shall be predicted correctly in order to improve availability of railway system and the predictive values shall be proved through the test. In conclusion, for the maintainability of train control system, the solution for exact prediction based on related international standard and the system for justification of derived predictive values shall be proposed.

  • PDF

무기체계 개발간 초기 설계단계에서의 정비도 예측방안 연구 (A Study on the Maintainability Prediction in the Initial Design Phase between Weapon System Development)

  • 김영석;허장욱
    • 한국군사과학기술학회지
    • /
    • 제22권6호
    • /
    • pp.824-831
    • /
    • 2019
  • For effective development in consideration of the maintainability of the weapon system, it is necessary to understand whether the maintainability design requirements are satisfied at the early phase of development. This requires the application of an early design phase maintainability prediction process to provide opportunities for improvement. By defining the ambiguity group definition, fault isolation level, fault isolation probability, and countermeasures for faults, it was possible to predict early phase development. The MTTR of the initial design phase applying Procedure V to the artillery system was 3.46H, which is about 16 % higher than 2.98H, the MTTR using Procedure II. This is a result of system design ambiguity that has not been specified in the early phase of development.

시스템 복잡도를 반영한 한국형 정비도 예측 방법론 (Korean Maintainability Prediction Methodology Reflecting System Complexity)

  • 권재언;허장욱
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.119-126
    • /
    • 2021
  • During the development of a weapon system, the concept of maintainability is used for quantitatively predicting and analyzing the maintenance time. However, owing to the complexity of a weapon system, the standard maintenance time predicted during the system's development differs significantly from the measured time during the operation of the equipment after the system's development. According to the analysis presented in this paper, the maintenance time can be predicted by considering the system's complexity on the basis of the military specifications, and the procedure can be Part B of Procedure II and Method B of Procedure V. The maintenance work elements affected by the system complexity were identified by the analytic hierarchy process technique, and the system-complexity-reflecting weights of the maintenance work elements were calculated by the Delphi method, which involves expert surveys. Based on MIL-HDBK-470A and MIL-HDBK-472, it is going to present a Korean-style maintainability prediction method that reflects system complexity of weapons systems.

보전성 경영 프로그램 개발을 위한 지침 (Guide-line for Developing a Maintainability Program)

  • 이낙영;김종걸;권영일;홍연웅;전영록;나명환
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2001년도 정기학술대회
    • /
    • pp.269-269
    • /
    • 2001
  • Maintainability refers to the ease with which maintenance work can be done. It involves the process of ensuring that products can be easily and safely maintained and that the maintenance support requirement is minimized. When a product has a reasonably long life, the cost of operation and support during that life can greatly exceed the initial capital cost. The value to the customer of optimizing maintainability should be evident. Some effort and expense applied to achieving a product which can be easily and cheaply maintained will make very significant savings in the life cycle costs. In this paper, the International Standard IEC 60300-3-10, which is the application guide for maintainability, is considered. This standard can be used to implement a maintainability program covering the initiation, development and in-service phases of a product. It provides guidance on how the maintenance aspects of the tasks should be considered in order to achieve optimum maintainability. The elements of a maintainability program, which are maintenance policy and concept, maintainability studies, project management, design for maintainability, analysis and prediction methods, maintenance verification and validation, analysis of life cycle cost, maintenance support planning, and collection and analysis of maintenance data, are fully discussed in this paper.

  • PDF

공항철도 신호시스템 전자연동장치에 대한 RAM 예측 (RAM Prediction of Signaling Interlocking System for AREX)

  • 송미옥;임성수;이창환;권민혁
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.255-261
    • /
    • 2007
  • In this paper we introduce the method, procedure and result of RAM prediction for interlocking system which is applied for AREX signaling system. For RAM prediction, we breakdown the interlocking system to the LRU level and select the LRUs of which failure can cause the service delay. The prediction of reliability is based on the Reliability Block Diagram which is the functional diagram composed of selected LRUs and finally, the availability of interlocking system is estimated from the combination of reliability and maintainability.

  • PDF

수명예측 방법에 따른 계전기의 수명분석 및 신뢰도 예측 (Life Analysis and Reliability Prediction of Relays based on Life Prediction Method)

  • 신건영;지정건;한재현;이덕규;손영진;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1327-1335
    • /
    • 2011
  • Recently, also in railway vehicles, related products are being designed and manufactured through RAMS activities in order to secure their reliability, availability, maintainability & safety. Subway operators are conducting R&D on various preventive maintenance methods and applying them to the field so as to establish a reliability centered maintenance(RCM) system. In this connection, manufacturers shall carry out R&D based on reliability from the first design stage of development to provide high quality products to subway operators. And operators shall have the products operated properly to their particular operating environment and managed based on the standard maintenance manual. Not only that, but the related field data shall be fed back into the manufacturers to upgrade upcoming products by organic cooperation between manufacturer and operators. However, the mutually beneficial cooperative relationship is not still developed in the domestic railway industry. In terms of methodology for life prediction, this study was intended to analyze field data on relays used for rolling stocks considering operational characteristics in the position of subway operators and predict parts reliability using reliability prediction program from the standpoint of manufacturers as well.

  • PDF

항공기의 RAM 예측을 위한 모델 개발에 관한 연구 (A Study on the development of model for aircraft RAM prediction)

  • 김성청
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.102-114
    • /
    • 1998
  • 항공기 개발단계에서의 RAM(Reliability, Availability, Maintainability) 예측은 진행중인 설계개념이 RAM 개발 목표값을 달성할 수 있는지를 판단하여 이를 설계에 반영하기 위한 것이다. 본 연구에서 신뢰도 예측 모델은 항공기의 임무에 초점을 둔 임무신뢰도와 시스템신뢰도를 산출하고, 정비도 예측 모델은 군수지원분석자료(LSAR)와의 호환성을 유지할 수 있도록 하였으며, 가용도 예측 모델은 신뢰도와 정비도 자료를 활용한 운용가용도를 예측하는 데에 기준을 두었다. 본 연구는 기존의 RAM 예측이 각각 독립적으로 수행된 점을 보완하여 서로간의 상호관계를 반영한 통합 예측 모델을 개발하는 데에 초점을 두었으며, 실제적인 운용개념을 반영한 모델링으로서 항공기 개발단계에서 뿐만 아니라 실제 운용단계에서의 RAM 분석에 효과적이라 판단된다.

  • PDF