• Title/Summary/Keyword: Main span

Search Result 512, Processing Time 0.029 seconds

Investigation of Live Load Deflection Limit for Steel Cable Stayed and Suspension Bridges

  • Park, Ki-Jung;Kim, Do-Young;Hwang, Eui-Seung
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1252-1264
    • /
    • 2018
  • Long span bridges such as steel cable stayed and suspension bridges are usually more flexible than short to medium span bridges and expected to have large deformations. Deflections due to live load for long span bridges are important since it controls the overall heights of the bridge for securing the clearance under the bridge and serviceability for securing the comfort of passengers or pedestrians. In case of sea-crossing bridges, the clearance of bridges is determined considering the height of the ship master from the surface of the water, the trim of the ship, the psychological free space, the tide height, and live load deflection. In the design of bridges, live load deflection is limited to a certain value to minimize the vibrations. However, there are not much studies that consider the live load deflection and its effects for long span bridges. The purpose of this study is to investigate the suitability of live load deflection limit and its actual effects on serviceability of bridges for steel cable-stayed and suspension bridges. Analytical study is performed to calculate the natural frequencies and deflections by design live load. Results are compared with various design limits and related studies by Barker et al. (2011) and Saadeghvaziri et al. (2012). Two long span bridges are selected for the case study, Yi Sun-Sin grand bridge (suspension bridge, main span length = 1545 m) and Young-Hung grand bridge (cable stayed bridge, main span length = 240 m). Long-term measured deflection data by GNSS system are collected from Yi Sun-Sin grand bridge and compared with the theoretical values. Probability of exceedance against various deflection limits are calculated from probability distribution of 10-min maximum deflection. The results of the study on the limitation of live load deflection are expected to be useful reference for the design, the proper planning and deflection review of the long span bridges around the world.

Investigation of seismic performance of super long-span cable-stayed bridges

  • Zhang, Xin-Jun;Zhao, Chen-Yang;Guo, Jian
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.493-503
    • /
    • 2018
  • With the further increase of span length, the cable-stayed bridge tends to be more slender, and becomes more susceptible to the seismic action. By taking a super long-span cable-stayed bridge with main span of 1400m as example, structural response of the bridge under the E1 horizontal and vertical seismic excitations is investigated numerically by the multimode seismic response spectrum and time-history analysis respectively, the seismic behavior and also the effect of structural nonlinearity on the seismic response of super long-span cable-stayed bridge are revealed. Furthermore, the effect of structural parameters including the girder depth and width, the tower structural style, the tower height-to-span ratio, the side-tomain span ratio, the auxiliary piers in side spans and the anchorage system of stay cables etc on the seismic performance of super long-span cable-stayed bridge is investigated numerically by the multimode seismic response spectrum analysis, and the favorable earthquake-resistant structural system of super long-span cable-stayed bridge is proposed.

Study of structural parameters on the aerodynamic stability of three-tower suspension bridge

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.471-485
    • /
    • 2010
  • In comparison with the common two-tower suspension bridge, due to the lack of effective longitudinal restraint of the center tower, the three-tower suspension bridge becomes a structural system with greater flexibility, and more susceptible to the wind action. By taking a three-tower suspension bridge-the Taizhou Bridge over the Yangtze River with two main spans of 1080 m as example, effects of structural parameters including the cable sag to span ratio, the side to main span ratio, the deck's dead load, the deck's bearing system, longitudinal structural form of the center tower and the cable system on the aerodynamic stability of the bridge are investigated numerically by 3D nonlinear aerodynamic stability analysis, the favorable structural system of three-tower suspension bridge with good wind stability is discussed. The results show that good aerodynamic stability can be obtained for three-tower suspension bridge as the cable sag to span ratio is assumed ranging from 1/10 to 1/11, the central buckle are provided between main cables and the deck at midpoint of main spans, the longitudinal bending stiffness of the center tower is strengthened, and the spatial cable system or double cable system is employed.

Reliability based analysis of torsional divergence of long span suspension bridges

  • Cheng, Jin;Li, Q.S.
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.121-132
    • /
    • 2009
  • A systematic reliability evaluation approach for torsional divergence analysis of long span suspension bridges is proposed, consisting of the first order reliability method and a simplified torsional divergence analysis method. The proposed method was implemented in the deterministic torsional divergence analysis program SIMTDB through a new strategy involving interfacing the proposed method with SIMTDB via a freely available MATLAB software tool (FERUM). A numerical example involving a detailed computational model of a long span suspension bridge with a main span of 888 m is presented to demonstrate the applicability and merits of the proposed method and the associated software strategy. Finally, the most influential random variables on the reliability of long span suspension bridges against torsional divergence failure are identified by a sensitivity analysis.

Near-Optimal Parameters of Three Span Continuous Beams subjected to a Moving Load (이동하중이 작용하는 3경간 연속보의 근사 최적제원)

  • 이병규;오상진;모정만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.139-146
    • /
    • 1997
  • The main purpose of this paper is to investigate the near-optimal parameters of continuous beam subject to a moving load. The computer-aided optimization technique is used to obtain the near-optimal parameters. The computer program is developed to obtain the natural frequency parameters and the forced vibration responses to a transit point load for the continuous beam with variable support spacing, mass and stiffness. The optimization function to describe the design efficiency is defined as a linear combination of four dimensionless span characteristics: the maximum dynamic stress; the stress difference between span segments; the rms deflection under the transit point load; and the total span mass. Studies of three span beams show that the beam with near-optimal parameters can improve design efficiency by 12 to 24 percent when compared to a reference configuration beams of the same total span length.

  • PDF

An Experimental Study on the Evaluation of Shear Strength in Reinforced Concrete Continuous Deep Beams (철근콘크리트 연속 깊은 보의 전단내력 평가에 대한 실험적 연구)

  • Yang Keun-Hyeok;Chung Heon-Soo;Park Jeong-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.393-396
    • /
    • 2004
  • The objective of this experimental study is to understand the shear behavior of reinforced concrete continuous deep beams. The main variables considered were concrete strength and shear span-to-depth ratio. Specimens of 4 two-span continuous deep beams were tested and compared with the strength of simple span beams. The results show that the influence of concrete strength on the shear strength of continuous deep beams is comparable to that on simple span deep beams. However, the effect of span-to-depth ratio is significantly greater than simple span deep beams.

  • PDF

A Study on the Optimal Width of the Main Span In the 2nd Bridge of lncheon (2) Economic Analysis on Port Operation according to Traffic Schemes in the Main Span (인천항 제2연륙교 적정 주경간 폭 결정에 관한 연구 (2) 주경간의 통항방식에 따른 항만운영의 경제성 분석)

  • Koo Ja-Yun;Kim Seok- Jae;Jang Eun- Kyu
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.65-69
    • /
    • 2005
  • A construction project of Incheon 2nd bridge, which is connected between the Incheon Song-Do New Town and the Incheon International Airport in Young-Jong-Do, has been proposed by the private capital in 1999. But the optimal width of the main span has not been decided in spite of the three investigations into the feasibility of ship's safe transit in this planned bridge. In this paper, we study the economic analysis on port operational efficiency according to traffic schemes, one-way or two-way of vessels over 10,000G/T, in the main span of this bridge. In this comparative result, total queueing time due to the one-way in the bridge main span is evaluated 20,362 hours in 2011 and 24,544 hours in 2020. Therefore the demurrage cost and the accumulation cost of freight are evaluated 19.7 billion won in 2011, and 23.3 billion won in 2020, then total accumulated costs during 33 years from 2008 until 2040 are evaluated about 768.9 billion won.

Capacity Evaluation of Composite Beams Composed of End-Reinforced Concrete and Center-Steel (단부 RC조 중앙부 S조로 이루어진 합성보의 내력 평가)

  • Lee, Seung Jo;Park, Jung Min;Kim, Ki Wook;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.151-159
    • /
    • 2005
  • This study investigated the capacity evaluation of composite beam of the end-reinforced concrete, the center steel with attached main-bar of stud-bolt welting and flange with main parameter, such as shear span depth ratio (a/d=1.5, 2.5, 3.5), reinforcing method, reinforcing length, and steel main-bar ratio. The test results are summarized as follows: As the RC section becomes longer, the capacity ratio of Vsrc, test/Vsrc, the gradually decreased, with the tendency of decrease being remarkably more than a/d=3.5. The reinforcing method showed superior result both vertically and horizontally. And, capacity increase ratio displayed tendency that main-bar fixing length is obvious in 0.15L, and underestimate experimental value usually in Vsrc, Eq(3)~(5) equation. The capacity estimation was proposed equation by regression analysis with change of shear span depth ratio and main-bar fixing, steel main-bar ratio.

Beffeting Analysis of Long Span Cable-stayed Bridge using PCCAP (PCCAP을 이용한 장대 사장교의 버페팅 해석)

  • 유원진;이석용;남효승;이완수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.202-208
    • /
    • 2003
  • In this study, a time domain analysis is presented for investigation on the buffeting response of cable-stayed bridge during both erection and completion stages. The main span length and width of deck are 520 m and 15.1m, each. Since the ratio of span over width is 34.44, aerodynamic stability of the bridge during erection is expected to dominate the safety of the bridge in construction stage. Several conclusions regarding different construction stages and temporary wind cables are obtained.

  • PDF

Effects of Expansion of Sleeper Span at the Deck End of a Long Continuous Bridge on Train Safety and Track Stability (장대교량 신축부에서 침목간격 확대가 차량의 주행안전성 및 궤도의 구조안정성에 미치는 영향)

  • Yang, Sin-Chu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.620-627
    • /
    • 2015
  • Long continuous bridge deck can become contracted considerably as temperature drops, which can lead to a large expansion of sleeper span at the end of it. Since this huge sleeper span then can cause problems both with safety of train operation and structural stability of tracks, it is necessary to take the issue into consideration systematically in the designing process of the bridge. In this paper, an evaluation process through the analysis of train-track interaction was presented which can basically review the effects of the expansion of sleeper span at the end of long continuous bridge deck on the safety of the train and the structural stability of the track. The analyses of the interaction between the light rail train and tracks were carried out targeting the sleeper span as a main parameter. The safety of train operation and structural stability of tracks in a light rail system due to the expansion of the sleeper span were evaluated by comparing the numerical results with the related criteria.