• 제목/요약/키워드: Main olfactory epithelium

검색결과 6건 처리시간 0.03초

The Olfactory Organ is Activated by a Repelling Pheromone in the Red-spotted Newt Notophthalmus viridescens

  • Park, Daesik;Propper, Catherine R.
    • Animal cells and systems
    • /
    • 제6권3호
    • /
    • pp.233-237
    • /
    • 2002
  • The pheromonal repelling response occurs when a combination of female and male pheromones is found to be less attractive to courting males than are female pheromones alone. This repelling response may act to conserve a courting males’reproductive fitness by minimizing ma1e-male competition within a courting group. Recently, a Pheromonal repelling response was first reported for vertebrates in the red-spotted newt, Notophthalmus viride-scens. A male cloacal pheromone, a ∼33 kDa protein, was identified as a repelling pheromone. In this study, to determine whether both the main olfactory epithelium (MOE) and/or the vomeronasal organ (VNO) are activated by the repelling pheromone, we recorded electrical field potentials from both olfactory epithelia while applying the repelling pheromone. The repelling pheromone induced electrical responses from both olfactory organs, and the magnitude of the response was greater in the VNO than in the MOE. Our results suggest that both the VNO and MOE may be involved in the pheromonal repelling response.

Lectin histochemistry of the olfactory mucosa of Korean native cattle, Bos taurus coreanae

  • Sungwoong, Jang;Bohye, Kim;Jeongmin, Lee;Sohi, Kang;Joong-Sun, Kim;Jong-Choon, Kim;Sung-Ho, Kim;Taekyun, Shin;Changjong, Moon
    • Journal of Veterinary Science
    • /
    • 제23권6호
    • /
    • pp.88.01-88.14
    • /
    • 2022
  • Background: The olfactory mucosa (OM) is crucial for odorant perception in the main olfactory system. The terminal carbohydrates of glycoconjugates influence chemoreception in the olfactory epithelium (OE). Objectives: The histological characteristics and glycoconjugate composition of the OM of Korean native cattle (Hanwoo, Bos taurus coreae) were examined to characterize their morphology and possible functions during postnatal development. Methods: The OM of neonate and adult Korean native cattle was evaluated using histological, immunohistochemical, and lectin histochemical methods. Results: Histologically, the OM in both neonates and adults consists of the olfactory epithelium and the lamina propria. Additionally, using periodic acid Schiff and Alcian blue (pH 2.5), the mucus specificity of the Bowman's gland duct and acini in the lamina propria was determined. Immunohistochemistry demonstrated that mature and immature olfactory sensory neurons of OEs express the olfactory marker protein and growth associated protein-43, respectively. Lectin histochemistry indicated that numerous glycoconjugates, including as N-acetylglucosamine, mannose, galactose, N-acetylgalactosamine, complex type N-glycan, and fucose groups, were expressed at varied levels in the different cell types in the OMs of neonates and adults at varying levels. According to our observations, the cattle possessed a well-developed olfactory system, and the expression patterns of glycoconjugates in neonatal and adult OMs varied considerably. Conclusions: This is the first study to describe the morphological assessment of the OM of Korean native cattle with a focus on lectin histochemistry. The findings suggest that glycoconjugates may play a role in olfactory chemoreception, and that their labeling properties may be closely related to OM development and maturity.

포유동물의 생식과 페로몬 (Mammalian Reproduction and Pheromones)

  • 이성호
    • 한국발생생물학회지:발생과생식
    • /
    • 제10권3호
    • /
    • pp.159-168
    • /
    • 2006
  • 설치류를 포함한 대부분의 포유동물은 페로몬 반응을 중개하는 두 개의 화학감각 시스템(chemosensory system)을 갖고 있는데, 각각 주후각시스템(main olfactory system, MOS)과 부후각시스템(accesory olfactory system, AOS)이다. MOS에 속하는 화학감각뉴런들은 주후각 상피 내에 위치하며, AOS에 속하는 화학감각뉴런들은 비강 윗부분의 서골비기관(vomeronasal organ, VNO)에 위치한다. 공기 중의 비휘발성 페로몬 성분들은 구개 위쪽으로 열린 관을 통해 VNO의 내강으로 이동한다. 페로몬 수용체 단백질들은 크게 두 개의 슈퍼패밀리 V1R과 V2R로 나뉘는데, 이들은 구조적으로 큰 차이가 있으며 MOS에서 발현되는 후각 수용체들과는 무관하다. 이들은 7개의 막관통 도메인을 갖는 G-단백질 결부 단백질(seven transmembrane domain G-protein coupled proteins, V1R은 $G_{{\alpha}i2}$와, 그리고 V2R은 $G_{0\;{\alpha}}$와 연관)이다. V2R은 비고전적 MHC Ib 유전자 산물인 M10과 기타 8개의 M1 패밀리 단백질들과 함께 작용한다. 그 외 VNO 뉴런의 중요한 구성 분자는 TrpC2로, 이는 transient receptor potential(TRP)의 양이온 채널 단백질이며 세포내 신호전달과정에서 중요한 역할을 할 것으로 추정된다. 포유동물의 화학적 의사소통과정에서 페로몬은 작용 모드 또는 효과에 따라 4종류로 분류할 수 있는데, 프라이머(primer), 신호자(signaler), 조정자(modulator) 그리고 방출자(releaser)이다. 근본적으로 이들 화학신호에 대한 반응들은 개체 간, 심지어는 한 개체 내에서도 다양할 수 있다. 이러한 다양성은 페로몬이 스테로이드 호르몬들과 함께 또는 단독으로, 신경전달물질들과 같은 비스테로이드 요인들의 후각정보 처리 과정에 미치는 각종 조절의 차이에 의해 나타날 수 있다. 이러한 조절은 유리한 사회적, 환경적인 조건들을 갖도록 수용자의 생식 축에 미치는 영향을 증강 또는 촉진한다. 가장 좋은 예는 수컷 생쥐의 소변 중의 테스토스테론 의존적인 주요 요단백질(major urinary proteins, MUPs)에 의한 임신방지효과(Bruce 효과)이다. 흥미롭게도 생쥐 GnRH 뉴런은 냄새와 페로몬 양자 모두로부터 페로몬 신호를 수용하는 것 같다. 비록 상당한 논란의 소지는 있지만, 그간의 연구들은 생식과 기타 여러 기능들 사이에 복잡한 상호교차 관계가 있음을 시사한다. 여기서 GnRH 뉴런은 다양한 원천으로부터의 정보를 통합하고, 다시 다양한 뇌기능을 조절하는 것으로 보인다.

  • PDF

The Vomeronasal Organ and Adjacent Glands Express Components of Signaling Cascades Found in Sensory Neurons in the Main Olfactory System

  • Lee, Sang Jin;Mammen, Alex;Kim, Esther J.;Kim, So Yeun;Park, Yun Ju;Park, Mira;Han, Hyung Soo;Bae, Yong-Chul;Ronnett, Gabriele V.;Moon, Cheil
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.503-513
    • /
    • 2008
  • The vomeronasal organ (VNO) is a sensory organ that influences social and/or reproductive behavior and, in many cases, the survival of an organism. The VNO is believed to mediate responses to pheromones; however, many mechanisms of signal transduction in the VNO remain elusive. Here, we examined the expression of proteins involved in signal transduction that are found in the main olfactory system in the VNO. The localization of many signaling molecules in the VNO is quite different from those in the main olfactory system, suggesting differences in signal transduction mechanisms between these two chemosensory organs. Various signaling molecules are expressed in distinct areas of VNO sensory epithelium. Interestingly, we found the expressions of groups of these signaling molecules in glandular tissues adjacent to VNO, supporting the physiological significance of these glandular tissues. Our finding of high expression of signaling proteins in glandular tissues suggests that neurohumoral factors influence glandular tissues to modulate signaling cascades that in turn alter the responses of the VNO to hormonal status.

오제스키병바이러스 인공감염 한국재래산양의 병리학적 소견 및 절편내 in situ hybridization 바이러스 동정 (Pathological findings and virus detection by in situ hybridization in the Korean native goats experimentally infected with Aujeszky's disease virus)

  • 김순복;송근석;문운경;정창근
    • 대한수의학회지
    • /
    • 제35권2호
    • /
    • pp.369-374
    • /
    • 1995
  • Aujeszky's disease virus(ADV) was inoculated intranasally into the Korean native goats to investigate pathological findings and pathogenesis of ADV infection by using of histological and immunohistochemical methods and in situ hybridization(ISH). Clinical signs of salvation, pyrexia, pruritus and staggering were followed by death with five days after inoculation, Pathoanatomical findings were edema of the lung and the urinary bladder with hemorrhage and congestion, petechial hemorrhages on the endo-and epicardium, renal congestion, moderate splenomegaly and cystic edema. Main microsocpic lesions observed in all infected goats were confined to the CNS and charcterized by perivascular cuffing with lymphocytes and macrophages, focal gliosis, neuronal degeneration and necrosis, and intranuclear inclusion bodies in the neurons and glial cells. Positive reactions to ADV were detected more frequently in the nuclei than in the cytoplasms of infected nerve cells in the CNS by immunohistochemistry and ISH. Frequenctly localized sites of ADV in the CNS were olfactory bulb, prietal cortex, callosal sulcus and corpus callosum. Positive reactions were also detected in the tonsillar epithelium, and alveolar macrophage and sloughed epithelium of the lung.

  • PDF

Subchronic Inhalation Toxicity of Trichloroacetonitrile on the Sprague Dawley Rats

  • Han, Jeong-Hee;Chung, Yong-Hyun;Lim, Cheol-Hong
    • Toxicological Research
    • /
    • 제31권2호
    • /
    • pp.203-211
    • /
    • 2015
  • Trichloroacetonitrile is used as an intermediate in insecticides, pesticides, and dyes. In Korea alone, over 10 tons are used annually. Its oral and dermal toxicity is classified as category 3 according to the globally harmonized system of classification and labelling of chemicals, and it is designated a toxic substance by the Ministry of Environment in Korea. There are no available inhalation toxicity data on trichloroacetonitrile. Thus, the present study performed inhalation tests to provide data for hazard and risk assessments. Sprague-Dawley rats were exposed to trichloroacetonitrile at concentrations of 4, 16, or 64 ppm for 6 hour per day 5 days per week for 13 weeks in a repeated study. As a result, salivation, shortness of breath, and wheezing were observed, and their body weights decreased significantly (p < 0.05) in the 16 and 64 ppm groups. All the rats in 64 ppm group were dead or moribund within 4 weeks of the exposure. Some significant changes were observed in blood hematology and serum biochemistry (e.g., prothrombin time, ratio of albumin and globulin, blood urea nitrogen, and triglycerides), but the values were within normal physiological ranges. The major target organs of trichloroacetonitrile were the nasal cavity, trachea, and lungs. The rats exposed to 16 ppm showed moderate histopathological changes in the transitional epithelium and olfactory epithelium of the nasal cavity. Nasal-associated lymphoid tissue (NALT) and respiratory epithelium were also changed. Respiratory lesions were common in the dead rats that had been exposed to the 64 ppm concentration. The dead animals also showed loss of cilia in the trachea, pneumonitis in the lung, and epithelial hyperplasia in the bronchi and bronchioles. In conclusion, the no-observed-adverse-effect level (NOAEL) was estimated to be 4 ppm. The main target organs of trichloroacetonitrile were the nasal cavity, trachea, and lungs.