Browse > Article
http://dx.doi.org/10.4142/jvs.22184

Lectin histochemistry of the olfactory mucosa of Korean native cattle, Bos taurus coreanae  

Sungwoong, Jang (Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University)
Bohye, Kim (Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University)
Jeongmin, Lee (Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University)
Sohi, Kang (Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University)
Joong-Sun, Kim (Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University)
Jong-Choon, Kim (Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University)
Sung-Ho, Kim (Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University)
Taekyun, Shin (Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University)
Changjong, Moon (Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University)
Publication Information
Journal of Veterinary Science / v.23, no.6, 2022 , pp. 88.01-88.14 More about this Journal
Abstract
Background: The olfactory mucosa (OM) is crucial for odorant perception in the main olfactory system. The terminal carbohydrates of glycoconjugates influence chemoreception in the olfactory epithelium (OE). Objectives: The histological characteristics and glycoconjugate composition of the OM of Korean native cattle (Hanwoo, Bos taurus coreae) were examined to characterize their morphology and possible functions during postnatal development. Methods: The OM of neonate and adult Korean native cattle was evaluated using histological, immunohistochemical, and lectin histochemical methods. Results: Histologically, the OM in both neonates and adults consists of the olfactory epithelium and the lamina propria. Additionally, using periodic acid Schiff and Alcian blue (pH 2.5), the mucus specificity of the Bowman's gland duct and acini in the lamina propria was determined. Immunohistochemistry demonstrated that mature and immature olfactory sensory neurons of OEs express the olfactory marker protein and growth associated protein-43, respectively. Lectin histochemistry indicated that numerous glycoconjugates, including as N-acetylglucosamine, mannose, galactose, N-acetylgalactosamine, complex type N-glycan, and fucose groups, were expressed at varied levels in the different cell types in the OMs of neonates and adults at varying levels. According to our observations, the cattle possessed a well-developed olfactory system, and the expression patterns of glycoconjugates in neonatal and adult OMs varied considerably. Conclusions: This is the first study to describe the morphological assessment of the OM of Korean native cattle with a focus on lectin histochemistry. The findings suggest that glycoconjugates may play a role in olfactory chemoreception, and that their labeling properties may be closely related to OM development and maturity.
Keywords
Glycoconjugate; immunohistochemistry; Korean native cattle (Hanwoo); lectin histochemistry; olfactory mucosa;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Joo YH, Jeong SM, Paradhipta DH, Lee HJ, Lee SS, Choi JS, et al. Improvement of conception rate on Hanwoo; the key hormones and novel estrus detector. J Anim Sci Technol. 2021;63(6):1265-1274.     DOI
2 Du G, Prestwich GD. Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry. 1995;34(27):8726-8732.     DOI
3 Senger PL. The estrus detection problem: new concepts, technologies, and possibilities. J Dairy Sci. 1994;77(9):2745-2753.     DOI
4 Shin DH, Lee HJ, Cho S, Kim HJ, Hwang JY, Lee CK, et al. Deleted copy number variation of Hanwoo and Holstein using next generation sequencing at the population level. BMC Genomics. 2014;15(1):240.
5 Ache BW, Young JM. Olfaction: diverse species, conserved principles. Neuron. 2005;48(3):417-430.   DOI
6 Mendoza AS. Morphological studies on the rodent main and accessory olfactory systems: the regio olfactoria and vomeronasal organ. Ann Anat. 1993;175(5):425-446.   DOI
7 Meredith M. Human vomeronasal organ function: a critical review of best and worst cases. Chem Senses. 2001;26(4):433-445.   DOI
8 Xu F, Greer CA, Shepherd GM. Odor maps in the olfactory bulb. J Comp Neurol. 2000;422(4):489-495.   DOI
9 Tirindelli R, Dibattista M, Pifferi S, Menini A. From pheromones to behavior. Physiol Rev. 2009;89(3):921-956.   DOI
10 Halpern M, Martinez-Marcos A. Structure and function of the vomeronasal system: an update. Prog Neurobiol. 2003;70(3):245-318.
11 Buck LB. The molecular architecture of odor and pheromone sensing in mammals. Cell. 2000;100(6):611-618.   DOI
12 Dulac C, Torello AT. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci. 2003;4(7):551-562.     DOI
13 Mucignat-Caretta C, Redaelli M, Caretta A. One nose, one brain: contribution of the main and accessory olfactory system to chemosensation. Front Neuroanat. 2012;6:46.
14 Morrison EE, Costanzo RM. Morphology of olfactory epithelium in humans and other vertebrates. Microsc Res Tech. 1992;23(1):49-61.   DOI
15 Sharma A, Kumar R, Aier I, Semwal R, Tyagi P, Varadwaj P. Sense of smell: structural, functional, mechanistic advancements and challenges in human olfactory research. Curr Neuropharmacol. 2019;17(9):891-911.   DOI
16 Eisthen HL. Phylogeny of the vomeronasal system and of receptor cell types in the olfactory and vomeronasal epithelia of vertebrates. Microsc Res Tech. 1992;23(1):1-21.   DOI
17 Foster JD, Getchell ML, Getchell TV. Identification of sugar residues in secretory glycoconjugates of olfactory mucosae using lectin histochemistry. Anat Rec. 1991;229(4):525-544.   DOI
18 Plendl J, Sinowatz F. Glycobiology of the olfactory system. Acta Anat (Basel). 1998;161(1-4):234-253.   DOI
19 Cook GM. Cell surface carbohydrates: molecules in search of a function? J Cell Sci Suppl. 1986;4:45-70.   DOI
20 Ibrahim D, Nakamuta N, Taniguchi K, Yamamoto Y, Taniguchi K. Histological and lectin histochemical studies on the olfactory and respiratory mucosae of the sheep. J Vet Med Sci. 2014;76(3):339-346.   DOI
21 Takami S, Getchell ML, Getchell TV. Resolution of sensory and mucoid glycoconjugates with terminal alpha-galactose residues in the mucomicrovillar complex of the vomeronasal sensory epithelium by dual confocal laser scanning microscopy. Cell Tissue Res. 1995;280(2):211-216.   DOI
22 Franceschini V, Lazzari M, Revoltella RP, Ciani F. Histochemical study by lectin binding of surface glycoconjugates in the developing olfactory system of rat. Int J Dev Neurosci. 1994;12(3):197-206.   DOI
23 Mendoza AS, Borish-Che'piuz B, Kiune'l V. Lectin-binding properties of the neuroepithelium of the vomeronasal organ, olfactory epithelium proper and the septal organ of Masera in mice (semithin section study). Arkh Anat Gistol Embriol 1989;97(9):76-81.
24 Smuts MS. Concanavalin A binding to the epithelial surface of the developing mouse olfactory placode. Anat Rec. 1977;188(1):29-37.   DOI
25 Nakajima T, Shiratori K, Ogawa K, Tanioka Y, Taniguchi K. Lectin-binding patterns in the olfactory epithelium and vomeronasal organ of the common marmoset. J Vet Med Sci. 1998;60(9):1005-1011.   DOI
26 Menco BP, Leunissen JL, Bannister LH, Dodd GH. Bovine olfactory and nasal respiratory epithelium surfaces. High-voltage and scanning electron microscopy, and cryo-ultramicrotomy. Cell Tissue Res. 1978;193(3):503-524.   DOI
27 Ibrahim D, Nakamuta N. Comparative histochemical analysis of glycoconjugates in the nasal vestibule of camel and sheep. Microsc Res Tech. 2018;81(6):681-689.   DOI
28 Lee KH, Park C, Bang H, Ahn M, Moon C, Kim S, et al. Histochemical study of the olfactory mucosae of the horse. Acta Histochem. 2016;118(4):361-368.   DOI
29 Gheri G, Gheri Bryk S, Balboni GC. Sugar residues of glycoconjugates in the olfactory epithelium of the human fetus: histochemical study using peroxidase-conjugated lectins. Boll Soc Ital Biol Sper 1991;67(8):781-788.
30 Nomura T, Takahashi S, Ushiki T. Cytoarchitecture of the normal rat olfactory epithelium: light and scanning electron microscopic studies. Arch Histol Cytol. 2004;67(2):159-170.   DOI
31 Kavoi B, Makanya A, Hassanali J, Carlsson HE, Kiama S. Comparative functional structure of the olfactory mucosa in the domestic dog and sheep. Ann Anat. 2010;192(5):329-337.     DOI
32 Solbu TT, Holen T. Aquaporin pathways and mucin secretion of Bowman's glands might protect the olfactory mucosa. Chem Senses. 2012;37(1):35-46.     DOI
33 Buiakova OI, Baker H, Scott JW, Farbman A, Kream R, Grillo M, et al. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons. Proc Natl Acad Sci U S A. 1996;93(18):9858-9863.     DOI
34 Farbman AI, Margolis FL. Olfactory marker protein during ontogeny: immunohistochemical localization. Dev Biol. 1980;74(1):205-215.     DOI
35 Key B, Giorgi PP. Soybean agglutinin binding to the olfactory systems of the rat and mouse. Neurosci Lett. 1986;69(2):131-136.  
36 Kuhlmann K, Tschapek A, Wiese H, Eisenacher M, Meyer HE, Hatt HH, et al. The membrane proteome of sensory cilia to the depth of olfactory receptors. Mol Cell Proteomics. 2014;13(7):1828-1843.     DOI
37 McClintock TS, Khan N, Xie C, Martens JR. Maturation of the olfactory sensory neuron and its cilia. Chem Senses. 2020;45(9):805-822.     DOI
38 Bock P, Rohn K, Beineke A, Baumgartner W, Wewetzer K. Site-specific population dynamics and variable olfactory marker protein expression in the postnatal canine olfactory epithelium. J Anat. 2009;215(5):522-535.     DOI
39 Key B, Giorgi PP. Selective binding of soybean agglutinin to the olfactory system of Xenopus. Neuroscience. 1986;18(2):507-515.     DOI
40 Plendl J, Schmahl W. Dolichos biflorus agglutinin: a marker of the developing olfactory system in the NMRI-mouse strain. Anat Embryol (Berl). 1988;177(5):459-464.     DOI
41 Barber PC. Ulex europeus agglutinin I binds exclusively to primary olfactory neurons in the rat nervous system. Neuroscience. 1989;30(1):1-9.     DOI
42 Ibrahim D, Abdel-Maksoud F, Taniguchi K, Yamamoto Y, Taniguchi K, Nakamuta N. Immunohistochemical studies for the neuronal elements in the vomeronasal organ of the one-humped camel. J Vet Med Sci. 2015;77(2):241-245.     DOI
43 Ichikawa M, Takami S, Osada T, Graziadei PP. Differential development of binding sites of two lectins in the vomeronasal axons of the rat accessory olfactory bulb. Brain Res Dev Brain Res. 1994;78(1):1-9.     DOI
44 Gong Q, Shipley MT. Expression of extracellular matrix molecules and cell surface molecules in the olfactory nerve pathway during early development. J Comp Neurol. 1996;366(1):1-14.     DOI
45 Lee SH, Park BH, Sharma A, Dang CG, Lee SS, Choi TJ, et al. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J Anim Sci Technol. 2014;56(1):2.