• Title/Summary/Keyword: Main converter

Search Result 538, Processing Time 0.027 seconds

A study on Three-Phase AC-DC Boost Converter using A Soft-Switching for discontinuous Mode (소프트 스윗치를 이용한 불연속 모드 3상 AC-DC 부스터 컨버터에 관한 연구)

  • Chun, J.H.;Kwak, D.G.;Kim, C.S.;Suh, K.Y.;Kwon, S.K.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.188-190
    • /
    • 1995
  • This paper describes a soft switching using discontinuous inductor current. The soft switching snubber circuit provides ZCS and ZVS for main switch. For high power applications, the input ractifier is fed from a three-phase ac source. The Conventional switching method is hard switching technics, because of the device turn off is ocurred in maximum reactor current. In this time, switching losses are maximised by the hard switching. In generally, soft switching technique has been adjusted with the snubber condenser in order to compensates for this losses. So, it was compared hard switching with soft switching which has proposed in this paper for switching losses, distortion factor by the simulation.

  • PDF

Optimal Design of Boost Inductor using Planar Magnetics Component (Planar Magnetic 소자를 사용한 부스트 인덕터의 최적 설계)

  • Shin, Yong-Hee;Jang, Hai-Jin;Kim, Chang-Sun;Lee, Chul-Kyung;Youn, Dae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1106-1107
    • /
    • 2007
  • Planar magnetic based design technologies have been widely applied to power design for better cooling and ease of fabrication. The planar transformer and the planar inductor have a low profile characteristics compare to the conventional transformer which would be more cubical in volume. High frequency operation of magnetic components is a main key to achieve high power density of the power module. However, at a high frequency, the skin effect and the proximity effect have to be considered very significantly in magnetic design and also the parasitics in the converter cannot be ignored. This paper deals with the design and the experiment of planar integrated magnetic component. The optimal design for planar magnetics is summarized.

  • PDF

MEM Temperature and Humidity Network Sensor for Wire and Wireless Network (유무선 통신용 MEMS 온습도 네트워크 센서)

  • Jung, Woo-Chul;Cha, Boo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.360-361
    • /
    • 2006
  • This paper describes a wire and wireless network sensor for temperature and humidity measurements. The network sensor comprises PLC(Power Line Communication) and RF transmitter(433MHz) for acquiring an internal (on-board) sensor signal, and measured data is transmitted to a main processing unit. The network sensor module is consist of MEMS sensor, 10-bit A/D converter, pre-amp., gain-amp., ADUC812 one chip processor and PLC/RF transmitting unit. The temperature and humidity sensor is based on MEMS piezoelectric membrane structure and is implemented by using dual function sensor for smart home and smart building.

  • PDF

Preliminary Design of a Power Control and Distribution Unit for a Small LEO Satellite Application (소형 저궤도 위성적용을 위한 전력조절분배기 예비설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Baek;Jang, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1438-1440
    • /
    • 2005
  • A power control and distribution unit(PCDU) plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. In this work, we perform the preliminary design of a PCDU scheme for the small LEO Satellite applications. The main constitutes of the PCDU are the battery interface module, the auxiliary supply modules, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, internal converter modules for regulated bus voltage generation. and instrument power distribution modules.

  • PDF

Research on Optimum Design of 3kW Bidirectional DC-DC Converter for Autonomous Vehicle's Emergency Power Generation System (자율주행차량의 ISG시스템에서 비상발전용 배터리 충·방전을 위한 3kW급 양방향 컨버터의 최적화 설계에 관한 연구)

  • Kim, Jin-Hak;Kang, Dong-Hun;Lee, Il-Oun
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.125-126
    • /
    • 2016
  • 본 논문에서는 자율주행차량의 ISG시스템에서 비상발전용 양방향 DC-DC 컨버터 개발을 위한 최적화 연구 결과를 발표한다. 자율주행차량의 주 전력시스템이 차단되었을 때 차량을 제어하는 시스템에 전력공급이 가능한 비상발전시스템은 현재 개발되지 않은 상태이다. 자율주행차량의 비상발전시스템의 최대 전력은 약 3kW이며 main battery 전압은 48V, sub battery 전압은 12V이다. 본 연구에서는 차량의 연비를 고려한 고전력 밀도와 배터리 수명을 고려한 전류 리플 최소화를 목표로 한다. 이를 위해 차동모드 커플더 인덕터를 가진 4상 인터리브드 방식으로 설계하였고, 최대 98.22%의 효율이 예상된다.

  • PDF

Slope Compensation Design of Buck AC/DC LED Driver Based on Discrete-Time Domain Analysis (이산 시간 영역 해석에 기반한 벅 AC/DC LED 구동기의 슬로프 보상 설계)

  • Kim, Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.207-214
    • /
    • 2019
  • In this study, discrete-time domain analysis is proposed to investigate the input current of a buck AC/DC light-emitting diode (LED) driver. The buck power factor correction converter can operate in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). Two discontinuous and two continuous conduction operating modes are possible depending on which event terminates the conduction of the main switch in a switching cycle. All four operating modes are considered in the discrete-time domain analysis. The peak current-mode control with slope compensation is used to design a low-cost AC/DC LED driver. A slope compensation design of the buck AC/DC LED driver is described on the basis of a discrete-time domain analysis. Experimental results are presented to confirm the usefulness of the proposed analysis.

Novel Single-inductor Multistring-independent Dimming LED Driver with Switched-capacitor Control Technique

  • Liang, Guozhuang;Tian, Hanlei
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Current imbalance is the main factor affecting the lifespan of light-emitting diode (LED) lighting systems and is generally solved by active or passive approaches. Given many new lighting applications, independent control is particularly important in achieving different levels of luminance. Existing passive and active approaches have their own limitations in current sharing and independent control, which bring new challenges to the design of LED drivers. In this work, a multichannel resonant converter based on switched-capacitor control (SCC) is proposed for solving this challenge. In the resonant network of the upper and lower half-bridges, SCC is used instead of fixed capacitance. Then, the individual current of the LED array is obtained through regulation of the effective capacitance of the SCC under a fixed switching frequency. In this manner, the complexity of the control unit of the circuit and the precision of the multichannel outputs are further improved. Finally, the superior performance of the proposed LED driver is verified by simulations and a 4-channel experimental prototype with a rated output power of 20 W.

Preliminary hydrodynamic assessments of a new hybrid wind wave energy conversion concept

  • Allan C de Oliveira
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.21-41
    • /
    • 2023
  • Decarbonization and energy transition can be considered as a main concern even for the oil industry. One of the initiatives to reduce emissions under studies considers the use of renewable energy as a complimentary supply of electric energy of the production platforms. Wind energy has a higher TRL (Technology Readiness Level) than other types of energy converters and has been considered in these studies. However, other types of renewable energy have potential to be used and hybrid concepts considering wind platforms can help to push the technological development of other types of energy converters and improve their efficiency. In this article, a preliminary hydrodynamic assessment of a new concept of hybrid wind and wave energy conversion platform was performed, in order to evaluate the potential of wave power extraction. A multiple OWCs (Oscillating Water Column) WEC (Wave Energy Converter) design was adopted for the analysis and some simplifications were adopted to permit using a frequency domain approach to evaluate the mean wave power estimation for the location. Other strategies were used in the OWC design to create resonance in the sea energy range to try to maximize the potential power to be extracted, with good results.

A Study on the Implementation of Wideband Hybrid Quadrature Polar Transmitter Platform (광대역 하이브리드 직교 폴라 송신 플랫폼 구현에 관한 연구)

  • Chang, Sang-Hyun;Lee, Il-Kyoo;Kim, Hyung-Jung;Kang, Sang-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.28-34
    • /
    • 2011
  • In this paper, we proposed the architecture of the Hybrid Quadrature Polar transmitter which has the wideband characteristics available for the SRD(Short Range Device). First, we developed the simulation environment and carried out performance degradation analysis. Second, we considered the slewrate of the VVA(Voltage Variable Attenuator), time delay between magnitude signal and phase signal and the number of bits for DAC(Digital-to-Analog Converter) as the main performance factors. Then we obtained the minimum required values to meet the transmitting performance requirements of 3GPP standards through simulation results. Based on these results, we implemented the Wideband Hybrid Quadrature Polar transmitter platform and varified the performance requirements through practical measurement.

Design of a CMOS Base-Band Analog Receiver for Wireless Home Network (무선 홈 네트워크용 CMOS 베이스밴드 아날로그 수신단의 설계)

  • 최기원;송민규
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.2
    • /
    • pp.111-116
    • /
    • 2003
  • In this paper, a CMOS baseband analog receiver for wireless home network is discussed. It is composed of a Gilbert type mixer, an Elliptic 6th order 1ow pass filter, and a 6-bit A/D converter. The main role of the mixer is generating a mixed analog signal between the 200MHz output signal of CMOS RF stage and the 199MHz local oscillator. After the undesired high frequency component of the mixed signal comes out. Finally, the analog signal is converted into digital code at the 6-bit A/D converter, The proposed receiver is fabricated with 0.25${\mu}{\textrm}{m}$ 1-poly 5-metal CMOS technology, and the chip area is 200${\mu}{\textrm}{m}$ X1400${\mu}{\textrm}{m}$. the receiver consumes 130㎽ at 2.5V power supply.