• Title/Summary/Keyword: Magnetorheological Fluid

Search Result 127, Processing Time 0.033 seconds

Magnetorheological fluids subjected to tension, compression, and oscillatory squeeze input

  • El Wahed, Ali K.;Balkhoyor, Loaie B.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.961-980
    • /
    • 2015
  • Magnetorheological (MR) fluids are capable of changing their rheological properties under the application of external fields. When MR fluids operate in the so-called squeeze mode, in which displacement levels are limited to a few millimetres but there are large forces, they have many potential applications in vibration isolation. This paper presents an experimental and a numerical investigation of the performance of an MR fluid under tensile and compressive loads and oscillatory squeeze-flow. The performance of the fluid was found to depend dramatically on the strain direction. The shape of the stress-strain hysteresis loops was affected by the strength of the applied field, particularly when the fluid was under tensile loading. In addition, the yield force of the fluid under the oscillatory squeeze-flow mode changed almost linearly with the applied electric or magnetic field. Finally, in order to shed further light on the mechanism of the MR fluid under squeeze operation, computational fluid dynamics analyses of non-Newtonian fluid behaviour using the Bingham-plastic model were carried out. The results confirmed superior fluid performance under compressive inputs.

Tribological and rheological tests of core-shell typed carbonyl iron/polystyrene particle-based magnetorheological fluid

  • Zhang, Peng;Dong, Yu Zhen;Choi, Hyoung Jin;Lee, Chul-Hee
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.342-349
    • /
    • 2018
  • Polystyrene (PS) was coated on carbonyl iron (CI) particles via dispersion polymerization to produce core-shell structured CI/PS particles and adopted as magnetorheological (MR) material. Two MR fluids were prepared by dispersing CI/PS and CI particles in silicone oil. Their MR and tribological properties were investigated using a rheometer and a reciprocating friction and wear tester, respectively. Experimental data showed that tribological properties of MR fluid based on CI/PS particles are significantly enhanced compared to those of CI based MR fluid. Sedimentation problem of CI/PS MR fluid was also expected to be improved due to relatively lower density of CI/PS particles.

Application of monodisperse Fe3O4 submicrospheres in magnetorheological fluids

  • Anupama, A.V.;Kumaran, V.;Sahoo, B.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.347-357
    • /
    • 2018
  • Steady shear response of a magnetorheological fluid (MRF) system containing porous mono-disperse magnetite ($Fe_3O_4$) spheres synthesized by solvothermal method is demonstrated. In applied magnetic field the interaction between the spherical particles leads to form strong columnar structures enhancing the yield strength and viscosity of the MRFs. The yield strengths of the MRFs also scale up with the concentration of magnetic particles in the fluid. Considering magnetic dipolar interaction between the particles the magneto-mechanical response of the MRFs is explained. Unlike metallic iron particles, the low-density corrosion resistant soft-ferrimagnetic $Fe_3O_4$ spherical particles make our studied MRF system efficient and reliable for shock-mitigation/vibration-isolation applications.

Performance Change of Application Devices Caused by Magnetorheological Particle Corrosion (자기유변 입자 부식에 따른 응용장치의 성능 변화)

  • Han, Young-Min;Choi, Seong-Cheol
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.193-199
    • /
    • 2016
  • MR(magnetorheological) devices for vehicle applications requires the consistent control performance and the reliable operation. However, the corrosion of iron particles consisting the MR fluid can significantly affect on MR properties. This paper presents an effect of the MR particle corrosion on the performance of MR fluids such as shear stress magnitude which is directly concerned with control performance. As a first step, MR particles are corroded by water-calcium chloride solution. The resulting MR particles are examined by scanning electron microscope (SEM) and their molar ratios are analyzed by the energy dispersive X-ray analysis (EDAX). By dispersing the corroded MR particles into silicone oil, the corroded MR fluid is synthesized for evaluation of MR effect change. A rotational viscometer is adopted to measure shear stress magnitude. Finally, it is demonstrated how much the corrosion affect on performances by comparing the normal MR fluid to the corroded MR fluid, from which performance investigation of the MR devices containing the corroded MR particles will be studied in the second phase of this study.

Behaviour of field-responsive suspensions under oscillatory shear flow

  • Keentok, Matti;See, Howard
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.117-123
    • /
    • 2007
  • There has been considerable interest in recent years in field-responsive suspensions, which are of some importance in industry in many different applications. The microstructure of these materials is a significant issue which can be probed by rheological measurements. In this study, measurements were made of a magnetorheological fluid (MRF) under steady and oscillatory shear flow, with and without a magnetic field. Mathematical inversion was used to derive the relaxation time spectrum of the MRF from oscillatory shear data. Experimental evidence is presented of the gel-like properties of this MRF.

Vibration Control of Railway Vehicle Steering Mechanism Using Magnetorheological Damper (MR 댐퍼를 이용한 철도 차량 조향 장치의 진동제어)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Yoo, Weon-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.369-374
    • /
    • 2007
  • This paper presents yaw vibration control performances of railway vehicle featuring controllable magnetorheological damper. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid resistance and MR effect. Design parameters are determined to achieve desired damping force level. The MR damper model is then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. Subsequently, computer simulation of vibration control via proportional-integral-derivative (PID) controller is performed using Matlab. Various control performances are demonstrated under external excitation by creep force between wheel and rail.

  • PDF

Vibration Control and Steering Performance Evaluation of Railway Vehicle Using Magnetorheological Damper (MR댐퍼를 이용한 철도 차량의 진동제어 및 조향성능 고찰)

  • Ha, Sung-Hoon;Choi, Seung-Bok;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.524-532
    • /
    • 2008
  • This paper presents yaw vibration control performances of railway vehicle featuring controllable magnetorheological damper. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid resistance and MR effect. Design parameters are determined to achieve desired damping force level. The MR damper model is then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. Subsequently, computer simulation of vibration control via proportional-integral-derivative(PID) controller is performed using Matlab. Various control performances are demonstrated under external excitation by creep force between wheel and rail.