DOI QR코드

DOI QR Code

Tribological and rheological tests of core-shell typed carbonyl iron/polystyrene particle-based magnetorheological fluid

  • Zhang, Peng (Nanjing Research Institute for Agricultural Mechanization Ministry of Agriculture) ;
  • Dong, Yu Zhen (Department of Polymer Science and Engineering, Inha University) ;
  • Choi, Hyoung Jin (Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Chul-Hee (Department of Mechanical Engineering, Inha University)
  • Received : 2018.06.11
  • Accepted : 2018.08.15
  • Published : 2018.12.25

Abstract

Polystyrene (PS) was coated on carbonyl iron (CI) particles via dispersion polymerization to produce core-shell structured CI/PS particles and adopted as magnetorheological (MR) material. Two MR fluids were prepared by dispersing CI/PS and CI particles in silicone oil. Their MR and tribological properties were investigated using a rheometer and a reciprocating friction and wear tester, respectively. Experimental data showed that tribological properties of MR fluid based on CI/PS particles are significantly enhanced compared to those of CI based MR fluid. Sedimentation problem of CI/PS MR fluid was also expected to be improved due to relatively lower density of CI/PS particles.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. J.D. Carlson, Magnetorheological Fluid Actuators, Adaptronics and Smart Structures, Springer-Verlag, Berlin, 1999 p. 180.
  2. J.S. An, W.J. Han, H.J. Choi, Colloid Surf. A 535 (2017) 16. https://doi.org/10.1016/j.colsurfa.2017.09.019
  3. M.R. Jolly, J.W. Bender, J.D. Carlson, J. Intell. Mater. Syst. Struct. 10 (1999) 5. https://doi.org/10.1177/1045389X9901000102
  4. D. Vagberg, B.P. Tighe, Soft Matter 13 (2017) 7207. https://doi.org/10.1039/C7SM01204G
  5. S.K. Mangal, V. Sharma, J. Braz. Soc. Mech. Sci. Eng. 39 (2017) 4191. https://doi.org/10.1007/s40430-017-0889-3
  6. W.L. Song, Q.C. Cai, S.B. Choi, C.H. Lee, Civil Eng. Build. Mater. 1 (2011) 17.
  7. B.K. Kumbhar, S.R. Patil, S.M. Sawant, Eng. Sci. Technol. 18 (2015) 432.
  8. P.P. Phule, Smart Mater. Bull. 2001 (2001) 7.
  9. A.G. Olabi, A. Grunwald, Mater. Des. 28 (2007) 2658. https://doi.org/10.1016/j.matdes.2006.10.009
  10. M. Sedlacik, R. Moucka, Z. Kozakova, N.E. Kazantseva, V. Pavlinek, I. Kuritka, O. Kaman, P. Peer, J. Magn. Magn. Mater. 326 (2013) 7. https://doi.org/10.1016/j.jmmm.2012.08.039
  11. W.L. Song, S.B. Choi, D.W. Lee, C.H. Lee, Sci. China Technol. Sci. 55 (2012) 56. https://doi.org/10.1007/s11431-011-4653-0
  12. V.R. Iyengar, A.A. Alexandridis, S.C. Tung, D.S. Rule, Tribol. Trans. 47 (2004) 23. https://doi.org/10.1080/05698190490279083
  13. M.A. Bramantya, T. Sawada, J. Magn. Magn. Mater. 323 (2011) 1330. https://doi.org/10.1016/j.jmmm.2010.11.040
  14. J. Rodriguez-Lopez, L. Elvira Segura, J. Magn. Magn. Mater. 324 (2012) 222. https://doi.org/10.1016/j.jmmm.2011.08.019
  15. M. Sedlacik, V. Pavlinek, RSC Adv. 4 (2014) 58377. https://doi.org/10.1039/C4RA11842A
  16. P. Zhang, K.H. Lee, C.H. Lee, J. Magn. Magn. Mater. 421 (2017) 13. https://doi.org/10.1016/j.jmmm.2016.07.064
  17. P. Zhang, K.H. Lee, C.H. Lee, J. Tribol. 140 (2017) 022201.
  18. A.J.F. Bombard, F.R. Goncalves, K. Shahrivar, A.L. Ortiz, J. de Vicente, Tribol. Int. 81 (2015) 309. https://doi.org/10.1016/j.triboint.2014.09.013
  19. Z. Hu, H. Yan, J. Yang, X. Wang, R. Yu, Arab. J. Sci. Eng. 39 (2014) 7355. https://doi.org/10.1007/s13369-014-1358-2
  20. W.L. Song, C.H. Lee, S.B. Choi, Trans. Nonferrous Met. Soc. China 23 (2013) 400. https://doi.org/10.1016/S1003-6326(13)62476-0
  21. J. Seok, S.O. Lee, K.I. Jang, B.K. Min, S.J. Lee, Tribol. Trans. 52 (2009) 460. https://doi.org/10.1080/10402000802687932
  22. Y. Tong, X. Dong, M. Qi, Smart Mater. Struct. 26 (2017) 025023. https://doi.org/10.1088/1361-665X/aa57cc
  23. P.L. Wong, W.A. Bullough, C. Feng, S. Lingard, Wear 247 (2001) 33. https://doi.org/10.1016/S0043-1648(00)00507-X
  24. Z.D. Hu, H. Yan, H.Z. Qiu, P. Zhang, Q. Liu, Wear 278-279 (2012) 48. https://doi.org/10.1016/j.wear.2012.01.006
  25. J.W. Seok, S.O. Lee, K.I. Jang, B.K. Min, S.J. Lee, Tribol. Trans. 52 (2009) 460. https://doi.org/10.1080/10402000802687932
  26. A.J. Bombard, M. Knobel, M.R. Alcantara, I. Joekes, J. Intell. Mater. Syst. Struct.13 (2002) 471. https://doi.org/10.1106/104538902030706
  27. A.B. Shorey, S.D. Jacobs, W.I. Kordonski, R.F. Gans, Appl. Opt. 40 (2001) 20. https://doi.org/10.1364/AO.40.000020
  28. S.W. Ko, J.Y. Lim, B.J. Park, M.S. Yang, H.J. Choi, J. Appl. Phys. 105 (2009) 07E703. https://doi.org/10.1063/1.3058674
  29. P. Zhang, K.H. Lee, C.H. Lee, Chin. J. Mech. Eng. 29 (2016) 84. https://doi.org/10.3901/CJME.2015.1126.139
  30. P. Zhang, K.H. Lee, C.H. Lee, Trans. Nonferrous Met. Soc. 24 (2014) 171. https://doi.org/10.1016/S1003-6326(14)63044-2
  31. K. Hayashi, W. Sakamoto, T. Yogo, Colloid Polym. Sci. 291 (2013) 2837. https://doi.org/10.1007/s00396-013-3039-1
  32. B.J. Park, F.F. Fang, K. Zhang, H.J. Choi, Korean J. Chem. Eng. 27 (2010) 716. https://doi.org/10.1007/s11814-010-0092-z
  33. V.Y. Dolmatov, J. Superhard Mater. 32 (2010) 14. https://doi.org/10.3103/S1063457610010028
  34. N.F. Dmitrichenko, R.G. Mnatsakanov, O.A. Mikosyanchik, A.I. Kushch, J. Frict. Wear 30 (2009) 399. https://doi.org/10.3103/S106836660906004X
  35. X. Quan, W. Chuah, Y. Seo, H.J. Choi, IEEE Trans. Magn. 50 (2014) 2500904.
  36. I.B. Jang, H.B. Kim, J.Y. Lee, J.L. You, H.J. Choi, M.S. Jhon, J. Appl. Phys. 97 (2005) 10Q912. https://doi.org/10.1063/1.1853835
  37. J.H. Kim, F.F. Fang, H.J. Choi, Y. Seo, Mater. Lett. 62 (2008) 2897. https://doi.org/10.1016/j.matlet.2008.01.067
  38. O. Volkova, G. Bossis, M. Guyot, V. Bashtovoi, A. Reks, J. Rheol. 44 (2000) 91. https://doi.org/10.1122/1.551075
  39. W.J. Han, S.H. Piao, H.J. Choi, Y.S. Seo, Colloids Surf. A 524 (2017) 79. https://doi.org/10.1016/j.colsurfa.2017.04.016
  40. P. Yang, M. Yu, H. Luo, J. Fu, H. Qu, Y. Xie, Appl. Surf. Sci. 416 (2017) 772. https://doi.org/10.1016/j.apsusc.2017.04.151
  41. J.M. Ginder, L.C. Davis, L.D. Elie, Int. J. Mod. Phys. B 10 (1996) 3293. https://doi.org/10.1142/S0217979296001744

Cited by

  1. Design of a New Bilayer Multipole Electromagnetic Brake System for a Haptic Interface vol.9, pp.24, 2018, https://doi.org/10.3390/app9245394
  2. Synthesized micro-theoretical analysis of performance of magnetorheological fluids subjected to shear mode operation: transmission, slip and sedimentation characteristics vol.7, pp.9, 2018, https://doi.org/10.1088/2053-1591/abb969
  3. Systematic Review on the Effects, Roles and Methods of Magnetic Particle Coatings in Magnetorheological Materials vol.13, pp.23, 2020, https://doi.org/10.3390/ma13235317
  4. Effects of magnetic ionic liquid as a lubricant on the friction and wear behavior of a steel-steel sliding contact under elevated temperatures vol.9, pp.1, 2021, https://doi.org/10.1007/s40544-019-0324-0
  5. Magnetorheological fluids based on core-shell carbonyl iron particles modified by various organosilanes: synthesis, stability and performance vol.17, pp.5, 2018, https://doi.org/10.1039/d0sm01785j
  6. Magnetorheological Fluids with Surface-Modified Iron Oxide Magnetic Particles with Controlled Size and Shape vol.13, pp.17, 2018, https://doi.org/10.1021/acsami.1c03225