DOI QR코드

DOI QR Code

Application of monodisperse Fe3O4 submicrospheres in magnetorheological fluids

  • Anupama, A.V. (Materials Research Centre, Indian Institute of Science) ;
  • Kumaran, V. (Department of Chemical Engineering, Indian Institute of Science) ;
  • Sahoo, B. (Materials Research Centre, Indian Institute of Science)
  • Received : 2018.05.04
  • Accepted : 2018.07.04
  • Published : 2018.11.25

Abstract

Steady shear response of a magnetorheological fluid (MRF) system containing porous mono-disperse magnetite ($Fe_3O_4$) spheres synthesized by solvothermal method is demonstrated. In applied magnetic field the interaction between the spherical particles leads to form strong columnar structures enhancing the yield strength and viscosity of the MRFs. The yield strengths of the MRFs also scale up with the concentration of magnetic particles in the fluid. Considering magnetic dipolar interaction between the particles the magneto-mechanical response of the MRFs is explained. Unlike metallic iron particles, the low-density corrosion resistant soft-ferrimagnetic $Fe_3O_4$ spherical particles make our studied MRF system efficient and reliable for shock-mitigation/vibration-isolation applications.

Keywords

Acknowledgement

Supported by : Department of Science and Technology, Government of India

References

  1. J. Rabinow, AIEE Trans. 67 (1948) 1308.
  2. Y.T. Choi, N.M. Wereley, Proc. Inst. Mech. Eng. D: J. Automob. Eng. 219 (2005) 741. https://doi.org/10.1243/095440705X28330
  3. G.J. Hiemenz, Y.T. Choi, N.M. Wereley, AIAA J. Aircr. 44 (2007) 1031. https://doi.org/10.2514/1.26492
  4. J.C. Ramallo, E.A. Johnson, B.F. Spencer Jr., J. Eng. Mech. ASCE 128 (2002) 1088. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1088)
  5. Y.T. Choi, N.M. Wereley, Y.S. Jeon, AIAA J. Aircr. 42 (2005) 1244. https://doi.org/10.2514/1.7919
  6. K.H. Guomundsson, Design of a Magnetorheological Fluid for an MR Prosthetic Knee Actuator with an Optimal Geometry, Ph.D. Thesis (2011).
  7. Y.T. Choi, N.M. Wereley, AIAA J. Aircr. 40 (2003) 432. https://doi.org/10.2514/2.3138
  8. D.C. Batterbee, N.D. Sims, R. Stanway, Z. Wolejsza, Smart Mater. Struct. 16 (2007) 2429. https://doi.org/10.1088/0964-1726/16/6/046
  9. D.C. Batterbee, N.D. Sims, R. Stanway, M. Rennison, Smart Mater. Struct. 16 (2007) 2441. https://doi.org/10.1088/0964-1726/16/6/047
  10. L. Zipser, L. Richter, U. Lange, Sens. Actuators A 92 (1-3) (2001) 318. https://doi.org/10.1016/S0924-4247(01)00590-8
  11. C. Miao, J.C. Lambropoulos, S.D. Jacobs, Appl. Opt. 49 (2010) 1951. https://doi.org/10.1364/AO.49.001951
  12. C. Kieburg, G. Oetter, R. Lochtman, C. Gabriel, H.M. Laun, J. Pfister, G. Schober, H. Steinwender, High performance magnetorheological fluids tailored for a 700 nm automotive 4-wheel-drive clutch, Proc. 10th Intl. Conf. on Electrorheological Fluids and Magnetorheological Suspensions, World Scientific, Singapore, 2007, pp. 101.
  13. F. Gratzer, H. Steinwender, A. Kusej, ATZ 110 (2008) 26.
  14. T. Kikuchi, K. Ikeda, K. Otsuki, T. Kakehashi, J. Furusho, J. Phys. Conf. Ser. 149 (2009) 012059. https://doi.org/10.1088/1742-6596/149/1/012059
  15. I. Bica, E.M. Anitas, Smart Mater. Struct. 26 (2017) 105038. https://doi.org/10.1088/1361-665X/aa8884
  16. I. Bica, E.M. Anitas, J. Ind. Eng. Chem. 64 (2018) 276. https://doi.org/10.1016/j.jiec.2018.03.025
  17. D.J. Klingenberg, AIChE J. 47 (2001) 246. https://doi.org/10.1002/aic.690470202
  18. J.M. Ginder, L.C. Davis, Appl. Phys. Lett. 65 (1994) 3410. https://doi.org/10.1063/1.112408
  19. J.H. Kim, F.F. Fang, H.J. Choi, Y. Seo, Mater. Lett. 62 (2008) 2897. https://doi.org/10.1016/j.matlet.2008.01.067
  20. F.F. Fang, M.S. Yang, H.J. Choi, IEEE Trans. Magn. 44 (2008) 4533. https://doi.org/10.1109/TMAG.2008.2001665
  21. A.V. Anupama, V. Kumaran, B. Sahoo, Mater. Res. Express (2018), doi:http://dx.doi.org/10.1088/2053-1591/aaabcc.
  22. B.J. Park, F.F. Fang, K. Zhang, H.J. Choi, Korean J. Chem. Eng. 27 (2010) 716. https://doi.org/10.1007/s11814-010-0092-z
  23. S.N. Shafrir, H.J. Romanofsky, M. Skarlinski, M. Wang, C. Miao, S. Salzman, T. Chartier, J. Mici, J.C. Lambropoulos, R. Shen, H. Yang, S.D. Jacobs, Appl. Opt. 48 (2009) 6797. https://doi.org/10.1364/AO.48.006797
  24. Y.D. Liu, F.F. Fang, H.J. Choi, Colloid Polym. Sci. 289 (2011) 1295. https://doi.org/10.1007/s00396-011-2452-6
  25. F.F. Fang, H.J. Choi, Phys. Stat. Sol. (a) 204 (2007) 4190. https://doi.org/10.1002/pssa.200777356
  26. F.F. Fang, Y.D. Liu, H.J. Choi, IEEE Trans. Magn. 45 (2009) 2507. https://doi.org/10.1109/TMAG.2009.2018677
  27. F.F. Fang, H.J. Choi, Colloid Polym. Sci. 288 (2010) 79. https://doi.org/10.1007/s00396-009-2138-5
  28. F.F. Fang, H.J. Choi, J. Appl. Phys. 103 (2008) 07A301. https://doi.org/10.1063/1.2829019
  29. R. Kumar, A.V. Anupama, V. Kumaran, B. Sahoo, Nano-Struct. Nano-Objects 16 (2018) 167. https://doi.org/10.1016/j.nanoso.2018.06.002
  30. M. Chand, A. Shankar, Noorjahan, K. Jain, R.P. Pant, RSC Adv. 4 (2014) 53960.
  31. H.S. Chae, S.D. Kim, S.H. Piao, H.J. Choi, Colloid Polym. Sci. 294 (2016) 647. https://doi.org/10.1007/s00396-015-3818-y
  32. J.H. Wei, C.J. Leng, X.Z. Zhang, W.H. Li, Z.Y. Liu, J. Shi, J. Phys. Conf. Ser. 149 (2009) 012083.
  33. J. Pacull, S. Goncalves, A.V. Delgado, J.D.G. Duran, M.L. Jimenez, J. Colloid Interface Sci. 337 (2009) 254. https://doi.org/10.1016/j.jcis.2009.04.083
  34. H.J. Choi, I.B. Jang, J.Y. Lee, A. Pich, S. Bhattacharya, H.J. Adler, IEEE Trans. Magn. 41 (2005) 3448. https://doi.org/10.1109/TMAG.2005.855197
  35. G. Wang, D. Zhao, Y. Ma, Z. Zhang, H. Che, J. Mu, X. Zhang, Y. Tong, X. Dong, Powder Tech. 322 (2017) 47. https://doi.org/10.1016/j.powtec.2017.08.065
  36. G. Wang, Y. Ma, Y. Tong, X. Dong, J. Ind. Eng. Chem. 48 (2017) 142. https://doi.org/10.1016/j.jiec.2016.12.032
  37. G. Wang, Y. Ma, Y. Tong, X. Dong, M. Li, J. Intell. Mater. Syst. Struct. 28 (2017) 2331. https://doi.org/10.1177/1045389X16685449
  38. A.V. Anupama, V. Kumaran, B. Sahoo, Soft Matter 14 (2018) 5407. https://doi.org/10.1039/C8SM00807H
  39. A.V. Anupama, V. Kumaran, B. Sahoo, Adv. Powder Technol. 29 (2018) 2188. https://doi.org/10.1016/j.apt.2018.06.002
  40. J.B. Jun, S.Y. Uhm, J.H. Ryu, K.D. Suh, Colloids Surf. A: Physicochem. Eng. Aspects 260 (2005) 157. https://doi.org/10.1016/j.colsurfa.2005.03.020
  41. T. Fan, D. Pan, H. Zhang, Ind. Eng. Chem. Res. 50 (2011) 9009. https://doi.org/10.1021/ie200970j
  42. R.A. Young, The Rietveld method, IUCr 5, 1-39, Oxford University Press, Oxford (1993).
  43. J. Rodriguez-Carvajal, FULLPROF: a program for rietveld refinement and pattern matching analysis, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 1990 p. 127.
  44. R.A. Brand, Nucl. Instrum. Methods B 28 (1987) 398. https://doi.org/10.1016/0168-583X(87)90182-0
  45. R.A. Brand, Nucl. Instrum. Methods B 28 (1987) 417. https://doi.org/10.1016/0168-583X(87)90183-2
  46. W.S. Rasband, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2016.
  47. G.D. Gatta, I. Kantor, T.B. Ballaran, L. Dubrovinsky, C. McCammon, Phys. Chem. Miner. 34 (2007) 627. https://doi.org/10.1007/s00269-007-0177-3
  48. A.V. Anupama, W. Keune, B. Sahoo, J. Magn. Magn. Mater. 439 (2017) 156. https://doi.org/10.1016/j.jmmm.2017.04.094
  49. S.K. Boda, A.V. Anupama, B. Basu, B. Sahoo, J. Phys. Chem. C 119 (2015) 6539. https://doi.org/10.1021/jp5114027
  50. H. Nagar, N.V. Kulkarni, S. Karmakar, B. Sahoo, I. Banerjee, P.S. Chaudhari, R. Pasricha, A.K. Das, S.V. Bhoraskar, S.K. Date, W. Keune, Mater. Charact. 59 (2008) 1215. https://doi.org/10.1016/j.matchar.2007.10.003
  51. H.K. Choudhary, R. Kumar, A.V. Anupama, B. Sahoo, 44, Ceram. Int. (44, 2018, 8877) (accepted). https://doi.org/10.1016/j.ceramint.2018.02.074
  52. H. El Ghandoor, H.M. Zidan, M.M.H. Khalil, M.I.M. Ismail, Int. J. Electrochem. Sci. 7 (2012) 5734.
  53. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, John Wiley and Sons, 2006.
  54. J.G. Ku, X.Y. Liu, H.H. Chen, R.D. Deng, Q.X. Yan, AIP Adv. 6 (2016) 025004. https://doi.org/10.1063/1.4941750
  55. A. Tsutomu, H. Noriyuki, W. Hitoshi, Sci. Technol. Adv. Mater.10 (2009) 014609. https://doi.org/10.1088/1468-6996/10/1/014609
  56. B.J. Park, F.F. Fang, H.J. Choi, Soft Matter 6 (2010) 5246. https://doi.org/10.1039/c0sm00014k
  57. J.D. Carlson, M.R. Jolly, Mechatronics 10 (2000) 555. https://doi.org/10.1016/S0957-4158(99)00064-1
  58. W.H. Li, C. Lynam, J. Chen, B. Liu, X.Z. Zhang, G.G. Wallace, Mater. Lett. 61 (2007) 3116. https://doi.org/10.1016/j.matlet.2006.11.045
  59. E. Mitsoulis, Rheol. Rev. (2007) 135.
  60. E.C. Bingham, Fluidity and Plasticity, McGraw-Hill, New York, 1922.
  61. W.H. Herschel, R. Bulkley, Kolloid Z. 39 (1926) 291. https://doi.org/10.1007/BF01432034
  62. N. Casson, Rheology of disperse systems, Ed. C.C. Mill, Pergamon Press, Oxford (1959).
  63. J.M. Ginder, L.C. Davis, L.D. Elie, Int. J. Mod. Phys. B 10 (1996) 3293. https://doi.org/10.1142/S0217979296001744
  64. Z. Cao, W. Jiang, X. Ye, X. Gong, J. Magn. Magn. Mater. 320 (2008) 1499. https://doi.org/10.1016/j.jmmm.2007.12.007
  65. R.C. Bell, D.T. Zimmerman, N.M. Wereley, Ch. 2. Magnetorheology of Fe Nanofibers Dispersed in a Carrier Fluid, RSC Smart Materials No. 6, Magnetorheology: Advances and Applications; Ed: N. Wereley, RSC, Cambridge, UK (2014).

Cited by

  1. Polymer-Magnetic Composite Particles of Fe 3 O 4 /Poly( o -anisidine) and Their Suspension Characteristics under Applied Magnetic Fields vol.11, pp.2, 2018, https://doi.org/10.3390/polym11020219
  2. Nitrogen doping as a fundamental way to enhance the EMI shielding behavior of cobalt particle-embedded carbonaceous nanostructures vol.43, pp.14, 2018, https://doi.org/10.1039/c9nj00639g
  3. Synthesis of highly magnetic Mn-Zn ferrite (Mn0.7Zn0.3Fe2O4) ceramic powder and its use in smart magnetorheological fluid vol.58, pp.5, 2019, https://doi.org/10.1007/s00397-019-01137-z
  4. Catalytic Investigation of Ag Nanostructures Loaded on Porous Hematite Cubes: Infiltrated versus Exteriors vol.4, pp.17, 2018, https://doi.org/10.1002/slct.201900326
  5. Characteristics of Oxidized Fe Topcoat and Its Effects on the Absorbing Property of Carbonyl Iron Coating vol.48, pp.6, 2019, https://doi.org/10.1007/s11664-019-07149-y
  6. Fe 3 O 4 @BNPs‐CPTMS‐Chitosan‐Pd(0) as an Efficient and Stable Heterogeneous Magnetic Nanocatalyst for the Chemoselective Oxidation of Alcohols and Homoselec vol.4, pp.28, 2018, https://doi.org/10.1002/slct.201901497
  7. Effects of heat treatment on the structural and electrical conductivity of Fe2O3-P2O5-PbO glasses vol.30, pp.21, 2018, https://doi.org/10.1007/s10854-019-02265-1
  8. Study of motion behavior of the chains composed of micro-sized magnetic particles through a microchannel vol.10, pp.1, 2018, https://doi.org/10.1063/1.5139988
  9. Measurement of single three-dimensional moduli to evaluate the effect of a uniform magnetic field on magnetorheological fluids vol.59, pp.3, 2018, https://doi.org/10.1007/s00397-020-01196-7
  10. Magnetorheological seal: A review vol.62, pp.4, 2018, https://doi.org/10.3233/jae-190082
  11. Gas-phase synthesis of iron oxide nanoparticles for improved magnetic hyperthermia performance vol.824, pp.None, 2018, https://doi.org/10.1016/j.jallcom.2020.153814
  12. Role of Composition in Enhancing Heat Transfer Behavior of Carbon Nanotube-Ethylene Glycol Based Nanofluids vol.16, pp.6, 2020, https://doi.org/10.1007/s13391-020-00243-y
  13. Investigation into Rheological Properties of Magnetorheological Polishing Slurry Using α-Cellulose as an Additive Agent and Its Polishing Performance vol.21, pp.11, 2018, https://doi.org/10.1007/s12541-020-00413-w
  14. Dynamics of a Pair of Paramagnetic Janus Particles under a Uniform Magnetic Field and Simple Shear Flow vol.7, pp.1, 2018, https://doi.org/10.3390/magnetochemistry7010016
  15. Synthesis of reduced graphene oxide/cobalt ferrite composite particles and their magnetorheological characteristics vol.11, pp.1, 2018, https://doi.org/10.1063/9.0000149
  16. Additive effect of rod-like magnetite/sepiolite composite particles on magnetorheology vol.93, pp.None, 2018, https://doi.org/10.1016/j.jiec.2020.09.025
  17. Magnetorheological Fluids with Surface-Modified Iron Oxide Magnetic Particles with Controlled Size and Shape vol.13, pp.17, 2018, https://doi.org/10.1021/acsami.1c03225
  18. Enhanced magnetorheological effect and sedimentation stability of bimodal magnetorheological fluids doped with iron nanoparticles vol.32, pp.12, 2021, https://doi.org/10.1177/1045389x20924831