Browse > Article

Behaviour of field-responsive suspensions under oscillatory shear flow  

Keentok, Matti (Engineering Support Group)
See, Howard (School of Chemical & Biomolecular Engineering, The University of Sydney)
Publication Information
Korea-Australia Rheology Journal / v.19, no.3, 2007 , pp. 117-123 More about this Journal
Abstract
There has been considerable interest in recent years in field-responsive suspensions, which are of some importance in industry in many different applications. The microstructure of these materials is a significant issue which can be probed by rheological measurements. In this study, measurements were made of a magnetorheological fluid (MRF) under steady and oscillatory shear flow, with and without a magnetic field. Mathematical inversion was used to derive the relaxation time spectrum of the MRF from oscillatory shear data. Experimental evidence is presented of the gel-like properties of this MRF.
Keywords
Magnetorheological fluid; field-responsive suspension; microstructure; cross-linking, oscillatory shear flow; mathematical inversion; non-linear regularization;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Chin, B.D., J.H. Park, M.H. Kwon and O.O. Park, 2001, Rheological properties and dispersion stability of magnetorheological suspensions, Rheol. Acta 40, 211-219   DOI
2 Chin, B.D. and H.H. Winter, 2002, Field-induced gelation, yield stress and fragility of an electro-rheological suspension, Rheol. Acta 41, 265-275   DOI
3 Ginder, J.M., 1998, Behaviour of magnetorheological fluids, MRS Bulletin, p26-29, August 1998
4 Klingenberg, D.J. and C.F. Zukoski, 1990. Studies on the steadyshear behavior of electrorheological suspensions, Langmuir 6, 15-24   DOI
5 Martin, J.E., K.M. Hill and C.P. Tiges, 1999. Magnetic field induced optical transmittance in colloidal suspensions, Phys. Rev. E 59, 5676-5692   DOI   ScienceOn
6 Sim, H.G., K.H. Ahn and S.J. Lee, 2003, Three dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow, J. Rheol. 47, 879-895   DOI   ScienceOn
7 Thimm, W., C. Friedrich, M. Marth and J. Honerkamp, 2000, Determination of the molecular weight distribution from the relaxation time spectrum, Proc. XIIIth International Congress on Rheology, Cambridge UK, 20-25 August 2000
8 Li, W.H., H. Du, G. Chen and S.H. Yeo, 2002, Experimental investigation of creep and recovery behaviors of magnetorheological fluids, Materials Science and Engineering AStructural Materials Properties Microstructure and Processing 333, 368-376   DOI   ScienceOn
9 Graessley, W.W., 1974, The entanglement concept in polymer rheology, Advances in Polymer Science 16, 1-179   DOI
10 Liu, J., G.A. Flores and R.S. Sheng, 2001, In-vitro investigation of blood embolization in cancer treatment using magnetorheological fluids, J. Magn. Magn. Mater. 225, 209-217   DOI   ScienceOn
11 Phan-Thien, N. and M. Safari-Ardi, 1998, Linear viscoelastic properties of flour-water doughs at different water concentrations, J. Non-Newtonian Fluid Mech 74, 137-150   DOI   ScienceOn
12 Choi, H.J., B.J. Park, M.S. Cho and J.L. You, 2007, Core-shell structured poly(methyl methacrylate) coated carbonyl iron particles and their magnetorheological characteristics, J. Magnetism and Magnetic Materials 310, 2835-2837   DOI   ScienceOn
13 Bombard, A., I. Joekes, M. Alcantara and M. Knobel, 2003, Magnetic susceptibility and saturation magnetization of some carbonyl iron powders used in magnetorheological fluids, Materials Science Forum 416-418, 753-758
14 Larson, R.G., 1999, The structure and rheology of complex fluids, Oxford University Press, New York, p345
15 Mead, D.W., 1994, Determination of molecular weight distribution of linear flexible polymers from linear viscoelastic material functions, Journal of Rheology 38, 1797-1827   DOI   ScienceOn
16 Gras, P.W., R.S. Anderssen, M. Keentok, F. Bekes and Appels, R., 2001, Gluten protein functionality in wheat flour processing: a review, Aust. J. Agric. Res. 52, 1311-1323   DOI   ScienceOn
17 Klingenberg, D.J., 2001, Magnetorheology: Applications and challenges, AIChE J. 47, 246-249   DOI   ScienceOn
18 Ferry, J.D., 1980, Viscoelastic properties of polymers, Wiley, New York
19 Keentok, M., 2001, Instabilities and other problems in parallel plate rheometery, Proc Australian-Korean Rheology Conference, Melbourne, 20-21 September 2001
20 Larson, R.G., 1988. Constitutive Equations for Polymer Melts and Solutions, Butterworths, Boston, p102
21 Weese, J. and C. Friedrich, 1994),Relaxation time spectra in rheology: Calculation and examples, Rheology 4, 69-76
22 Vekas, L., M. Rasa and D. Bica, 2000, Physical properties of magnetic fluids and nanoparticles from magnetic and magnetorheological measurements, J. Colloid Interface Sci. 231, 247- 254   DOI   ScienceOn
23 Keentok, M., 1997, Edge fracture in rheometry, PhD thesis, Department of Mechanical Engineering, the University of Sydney
24 Rankin, P.J., J.M. Ginder and D.J. Klingenberg, 1998, Electro and magnetorheology, Curr. Opin. Colloid Interface Sci. 3, 373-381   DOI   ScienceOn
25 See, H. and R. Tanner, 2003, Shear rate dependence of the normal force of a magnetorheological suspension, Rheol. Acta 42, 166-170   DOI
26 Honerkamp, J. and J. Weese, 1993, A nonlinear regularization method for the calculation of relaxation spectra, Rheol. Acta 32, 65-73   DOI
27 Tao, R., 2001, Super-strong magnetorheological fluids, J. Phys-Condens Matter 13, R979-R999   DOI   ScienceOn
28 Flores, G.A., R. Sheng and J. Liu, 1999, Medical applications of magnetorheological fluids - A possible new cancer therapy, J Intell. Mat. Syst. Struct. 10, 708-713
29 Satoh, A. and S. Kamiyama, 1995. On aggregation phenomena in magnetic fields, J. Colloid Interface Sci. 172, 37-47   DOI   ScienceOn
30 Keentok, M., M.P. Newberry, P. Gras, F. Bekes and R.I. Tanner, 2002, The rheology of bread dough made from four commercial flours, Rheol. Acta 41, 173-179   DOI
31 Park, J.H. and O.O. Park, 2001, Electrorheology and magnetorheology, Korea-Australia Rheology Journal 13, 13-17
32 Park, J.H., B.D. Chin and O.O. Park, 2001. Rheological properties and stabilization of magnetorheological fluids in a waterin- oil emulsion, J. Colloid Interface Sci. 240, 349-354   DOI   ScienceOn
33 Melle, S., O.G. Calderon, M.A. Rubio and G.G. Fuller, 2002, Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results, J. Non-Newtonian Fluid Mech 102, 135-148   DOI   ScienceOn
34 Mours, M. and H.H. Winter, 1998, Relaxation patterns of endlinking polydimethylsiloxane near the gel point, Polymer Bulletin 40, 267-274   DOI
35 See, H., 2001, Mechanisms of magneto- and electro-rheology: recent progress and unresolved issues, Applied Rheology 11, 70-82
36 See, H.T., 1999, Advances in modelling the mechanisms and rheology of electrorheological fluids, Korea-Australia Rheology Journal 11, 169-195
37 Halsey, T.C., 1993, Electrorheological fluids - structure and dynamics, Adv. Mater 5, 711-718   DOI   ScienceOn
38 Klingenberg, D.J., 1998, Particle polarization and nonlinear effects in electrorheological suspensions, MRS Bulletin, p30, August 1998
39 Parthasarathy, M. and D.J. Klingenberg, 1996, Electrorheology: mechanisms and models, Materials Science and Engineering R17, 57-103
40 Rankin, P.J., A.T. Horvath and D.J. Klingenberg, 1999, Magnetorheology in viscoplastic media, Rheol. Acta 38, 471-477   DOI
41 Pan, X. and G.H. McKinley, 1997, Structural limitations to the material strength of electrorheological fluids, Appl. Physics Lett. 71, 333-335   DOI   ScienceOn