• Title/Summary/Keyword: Magneto-optical properties

Search Result 95, Processing Time 0.026 seconds

Variation of Local Coercivity Distribution in CoCrPt Alloy Films with Pt Composition (Pt 함량에 따른 CoCrPt 합금박막의 국소보자력 분포 변화)

  • Im, Mi-Young;Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.20-23
    • /
    • 2002
  • The local coercivity distribution of CoCrPt alloy films prepared by dc magnetron sputtering has been investigated by means of a magneto-optical microscope magnetometer (MOMM) capable of simultaneously measuring the local properties on 400 nm spatial resolutions. Serial samples of CoCrPt alloy films were prepared with the Pt composition of a range from 6 to 28 at. %. We find that the local coercivity distribution crosses over from Gaussian to non-Gaussian distribution in CoCrPt alloy films with increasing Pt composition, with increasing trends in the width of the distribution as well as the average local coercivity. Transmission electron microscopy (TEM) studies reveal that our findings are closely correlated with the dependences of the grain size distribution and its average size on Pt concentration.

Effects of Sputtering Ar Pressure on Magnetic and Magneto-optical Propwrties in Compositionally Modulated Co/Pd Supwrlattice Thin Films (조성변조 Co/Pd 초격자 박막의 Ar가스 압력변화에 따른 자기 및 자기광학적 특성)

  • 김진홍;신성철
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.2
    • /
    • pp.119-124
    • /
    • 1992
  • We have investigated the effects of sputtering Ar gas pressure on magnetic and magneto-optical properties in compositionally modulated Co/Pd superlattice thin films. The samples were prepared by dc magnetron sputtering from 2-in.-diam Co and Pd targets by alternately exposing the substrates to targets. Sputtering Ar gas pressure was varied from 2 to 30 mTorr. All samples had same bilayer thicknesses composed of 2-$\AA$-thick Co and 9-$\AA$-thick Pd sublayers. It was observed that the colum-nar structure was more distinctively developed with increasing Ar gas pressure. We observed that the intrinsic uniaxial anisotropy energy, magnetization and polar Kerr rotation were decreased with increasing Ar gas pressures. Large coercivity and perfect squareness were attained by the deposition at the high Ar gas pressure. We believe that the results are mainly ascribed the variation of micro-structure with sputtering Ar gas pressure.

  • PDF

Nature of the Interfacial Regions in the Antiferromagnetically-coupled Fe/Si Multilayered Films

  • Moon, J.C.;Y.V. Kudryavtsev;J.Y.Rhee;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.174-174
    • /
    • 2000
  • A strong antiferromagnetic coupling in Fe/Si multilayered films (MLF) had been recently discovered and much consideration has been given to whether the coupling in the Fe/Si MLF system has the same origin as the metal/metal MLF. Nevertheless, the nature of the interfacial ron silicide is still controversial. On one hand, a metal/ semiconductor structure was suggested with a narrow band-gap semiconducting $\varepsilon$-FeSi spacer that mediates the coupling. However, some features show that the nature of coupling can be well understood in terms of the conventional metal/metal multilayered system. It is well known that both magneto-optical (MO) and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In this study, the nature of the interfacial regions is the Fe/Si multilayers has been investigated by the experimental and computer-simulated MO and optical spectroscopies. The Fe/Si MLF were prepared by rf-sputtering onto glass substrates at room temperature with the number of repetition N=50. The thickness of Fe sublayer was fixed at 3.0nm while the Si sublayer thickness was varied from 1.0 to 2.0 nm. The topmost layer of all the Fe/Si MLF is Fe. In order to carry out the computer simulations, the information on the MO and optical parameters of the materials that may constitute a real multilayered structure should be known in advance. For this purpose, we also prepared Fe, Si, FeSi2 and FeSi samples. The structural characterization of Fe/Si MLF was performed by low- and high -angle x-ray diffraction with a Cu-K$\alpha$ radiation and by transmission electron microscopy. A bulk $\varepsilon$-FeSi was also investigated. The MO and optical properties were measured at room temperature in the 1.0-4.7 eV energy range. The theoretical simulations of MO and optical properties for the Fe/Si MLF were performed by solving exactly a multireflection problem using the scattering matrix approach assuming various stoichiometries of a nonmagnetic spacer separating the antiferromagnetically coupled Fe layers. The simulated spectra of a model structure of FeSi2 or $\varepsilon$-FeSi as the spacer turned out to fail in explaining the experimental spectra of the Fe/Si MLF in both intensity and shape. Thus, the decisive disagreement between experimental and simulated MO and optical properties ruled out the hypothesis of FeSi2 and $\varepsilon$-FeSi as the nonmagnetic spacer. By supposing the spontaneous formation of a metallic ζ-FeSi, a reasonable agreement between experimental and simulated MO and optical spectra was obtained.

  • PDF

Effect of Carrier Gas Flow Rate on Magnetic Properties of Bi:YIG Films Deposited with Aerosol Deposition Method (에어로졸성막법에 의해 제작된 Bi:YIG 막에 미치는 에어로졸유량의 영향)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.14-18
    • /
    • 2008
  • Bismuth-substituted yttrium iron garnet(Bi:YIG) films, which show excellent magnetic and magneto-optical properties as well as low optical losses by optimizing their deposition and post-annealing condition, have been attracting great attention in optical device research area. In this study, the Bi:YIG thick films were deposited with the aerosol deposition method for the final purpose of applying them to optical isolators. Since the aerosol deposition is based on the impact adhesion of sub-micrometer particles accelerated by a carrier gas to a substrate, the flow rate of carrier gas, which is in proportion to mechanically collision energy, should be treated as an important parameter. The Bi:YIG($Bi_{0.5}Y_{2.5}Fe_5O_{12}$) particles with $100{\sim}500$ nm in average diameter were carried and accelerated by nitrogen gas with the flow rate of 0.5 l/min${\sim}$10 l/min. The coercive force decreased from 51 Oe to 37 Oe exponentially with increasing gas flow rate. This is presumably due to the fact that the optimal collision energy results in reduction of impurity and pore, which makes the film to be soft magnetically. The saturation magnetization decreased due to crystallographical distortion of the film with increasing gas flow rate.

Magnetic Properties of Monolayer-thiciness InP(001)(2×4) Reconstruction Surface (InP(001)(2×4)재구성된 표면 위에 원자층 단위로 증착된 Co 박막의 자성 특성)

  • Park, Yong-Sung;Jeong, Jong-Ryul;Lee, Jeong-Won;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.89-94
    • /
    • 2004
  • We have investigated magnetic properties of monolayer (ML)-thickness Co film deposited on InP(2${\times}$4) reconstruction surface using in situ Surface Magneto-Optical Kerr Effects (SMOKE) measurement system. InP(2${\times}$4) reconstruction surface, obtained by repeated sputtering and annealing, was confirmed by reflection hish energy electron diffraction (RHEED) and scanning tunneling microscope (STM) measurements. From both longitudinal and polar SMOKE measurements, we have observed three distinguishable regions showing different magnetic properties depending on the Co thickness. In the Co film thickness smaller than 7 $m\ell$, no SMOKE signal was detected. In the following thickness between 8 $m\ell$ and 15 $m\ell$, both longitudinal and polar Kerr hysteresis loops were observed, which implies a metastable phase coexisted of in-plane and perpendicular anisotropies. In the film thickness larger than 16 $m\ell$, only longitudinal MOKE signal without polar signal was detected, which implies existence of in-plane anisotropy in this thickness region.

Magneto-optical Properties and Aging Effects of TbFeCo Thin Films Prepared with The Facing Targets Sputtering system (Facing targets sputtering system으로 제조된 TbFeCo 박막의 광자기 특성 및 시효 영향)

  • Mun, Jeong-Tak;Kim, Myeong-Han;Kim, Wan-Cheol
    • Korean Journal of Materials Research
    • /
    • v.5 no.4
    • /
    • pp.476-482
    • /
    • 1995
  • TbFeCo 박막의 Facing Targets Sputtering System 조건, 조성 및 시효 처리에 따른 광자기적 특성과 산화 특성을 조사하였다. XPS와 AES를 통하여 보호막 없이 제조된 TbFeCo 박막의 표면에는 Co에 우선하여 Tb과 Fe가 안정한 산화물의 형태로 존재하며, 표면에서 3.2nm 깊이부터는 산화되지 않은 TbFeCo 박막이 존재함을 확인하였다. TbFeCo 박막을 시효 시킴에 따라 Fe 산화층의 두께는 거의 변화가 없었으며, Tb Oxide 층만이 증가하였다. TbFeCo 박막은 사용된 기판의 종류나 제조조건에 따라 열적 안정성에 큰 차이를 보였다.

  • PDF

Magneto-Optical Properties of MnSbPt Thin Films Prepared by Thermal Evaporation (증착법으로 제조한 MnSbPt 합금박막의 자기광학적 특성)

  • Lee, Gyeong-Jae;Song, Yeong-Min;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.6 no.5
    • /
    • pp.470-474
    • /
    • 1996
  • 증착법을 이용해 증착시 기판의 온도를 변화시키면서 MnSbPt 합금 박막을 만들고 이를 열처리 한 후 나타나는 자기 및 자기광학적 성질을 조사하였다. Mn45Sb45Pt10조성의 박막에서 0.85$^{\circ}$의 높은 Kerr Rotation Angle값을 나타내고, 또한 광원의 입사파장이 단파장으로 이동하여도 우수한 Kerr Rotation Angle 값을 유지함으로써 자기광 재료로서의 기록밀도 향상가능성이 기대된다. 이 재료가 갖고 있는 열악한 자기적성질도 열처리를 통하여 포화자화값과 보자력의 향상 효과를 얻었지만, 자기광 재료가 갖추어야할 수직자화를 얻기에는 미흡하여 이에 대한 보완이 필요하다.

  • PDF

Magnetization Distribution in Thin-Film Magnetic Head

  • Shin, Kyung-Ho;Shalyguina, E.E.;Lee, J.H;Rhie, K.
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.55-58
    • /
    • 2000
  • Local magnetic properties and magnetization distributions on the air-bearing surface of a thin-film magnetic head have been studied by using scanning magneto-optical Kerr microscopy. The examined head was a merged MR read/inductive writing head with a write gap equal to 0.3 $\mu m$. Sizes of top and bottom pole-tips on the air-bearing surface of the writing head were equal to $3\mu m\times3\mu m$ and $3\mu m\times30\mu m$, respectively, The measured magnetic characteristics on the head air-bearing surface were found to be very sensitive to the head design. In particular, magnetization distributions were discovered to have asymmetrical shape. Maximum magnitudes of the magnetization were located near the shorten pole-tip. So, it was experimentally proved that more magnetic flux emanates just from this part of the air-bearing head surface.

  • PDF

Thermal Properties of Mn-doped LiNbO3 Crystals from Magneto-Optical Transitions

  • Park, Jung-Il
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.255-260
    • /
    • 2012
  • In this study, we determine that the electron paramagnetic resonance line-width (EPRLW) is axially symmetric about the c-axis and analyze the spin Hamiltonian with an isotopic g-factor of 1.9920 at a frequency of 9.5 GHz. It should be noted that the electron paramagnetic resonance signals are Lorentzian. Our findings show that the EPRLW decreases exponentially with an increase in the temperature; i.e., its temperature dependence in the range 300-400 K obeys Arrhenius behavior, this kind of temperature dependence indicates an off-center a motional narrowing of the spectrum when $Mn^{2+}$ impurity ions substitute for $Nb^{5+}$ ions. The specific heats follow a linear dependence suggesting a simple Debye $T^3$ behavior.