Browse > Article
http://dx.doi.org/10.4283/JMAG.2012.17.4.255

Thermal Properties of Mn-doped LiNbO3 Crystals from Magneto-Optical Transitions  

Park, Jung-Il (Nano-Physics and Technology Laboratory, School of Physics and Energy Sciences, Kyungpook National University)
Publication Information
Abstract
In this study, we determine that the electron paramagnetic resonance line-width (EPRLW) is axially symmetric about the c-axis and analyze the spin Hamiltonian with an isotopic g-factor of 1.9920 at a frequency of 9.5 GHz. It should be noted that the electron paramagnetic resonance signals are Lorentzian. Our findings show that the EPRLW decreases exponentially with an increase in the temperature; i.e., its temperature dependence in the range 300-400 K obeys Arrhenius behavior, this kind of temperature dependence indicates an off-center a motional narrowing of the spectrum when $Mn^{2+}$ impurity ions substitute for $Nb^{5+}$ ions. The specific heats follow a linear dependence suggesting a simple Debye $T^3$ behavior.
Keywords
electron paramagnetic resonance line-width (EPRLW); projection-isolation technique (PIT); magnetooptical transition; specific heat;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. A. Samara, J. Phys: Condens. Matter 15, R367 (2003).   DOI   ScienceOn
2 R. T. Smith and F. S. Welsh, J. Appl. Phys. 42, 2219 (1971).   DOI
3 D. B. Fraser and A. W. Warner, J. Appl. Phys. 37, 3853 (1966).   DOI
4 H. C. Huang, J. D. Knox, Z. Turski, R. Wargo, and J. J. Hanak, Appl. Phys. Lett. 24, 109 (1974).   DOI
5 F. R. Gfeller, Appl. Phys. Lett. 29, 655 (1976).   DOI
6 I. P. Kaminow, J. R. Carruthers, E. H. Turner, and L. W. Stulz, Appl. Phys. Lett. 22, 540 (1973).   DOI
7 T. Takeda, A. Watanabe, and K. Sugihara, Phys. Lett. A 27, 14 (1968).   DOI   ScienceOn
8 M. P. Petrov, Fiz. Tver. Tela 10, 3254 (1968).
9 D. G. Rexford, Y. M. Kim, and H. S. Story, J. Chem. Phys. 52, 860 (1970).   DOI
10 S. Fujita and C. C. Chen, IJTP 2, 59 (1969).
11 H. Mori, Progr. Theor. Phys. 34, 399 (1965).   DOI
12 A. Suzuki and D. Dunn, Phys. Rev. B 25, 7754 (1982).   DOI
13 W. Xiaoguang, F. M. Peeters and J. T. Devreese, Phys. Rev. B 34, 8800 (1986)   DOI   ScienceOn
14 X. Wu, F. M. Peeters, and J. T. Devreese, Phys. Rev. B 40, 4090 (1989)   DOI   ScienceOn
15 X. J. Kong, C. W. Wei, and S. W. Gu, Phys. Rev. B 39, 3230 (1989).   DOI   ScienceOn
16 P. N. Argyres and J. L. Sigel, Phys. Rev. Lett. 31, 1397 (1973).   DOI
17 J. I. Park, H. R. Lee, and S. H. Lee, Jpn. J. Appl. Phys. 51, 52402 (2012)   DOI
18 J. I. Park, J. Y. Sug, and H. R. Lee, J. Kor. Phys. Soc. 51, 623 (2007)   DOI   ScienceOn
19 J. I. Park, J. Y. Sug, and H. R. Lee, J. Kor. Phys. Soc. 53, 776 (2008)   DOI   ScienceOn
20 J. Y. Sug, Phys. Rev. B 64, 235210 (2001)   DOI   ScienceOn
21 J. Y. Sug, Phys. Rev. E 55, 314 (1997).   DOI   ScienceOn
22 J. I. Park, H. R. Lee, and H. K. Lee, J. Magnetics 16, 108 (2011).   DOI   ScienceOn
23 R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).   DOI
24 H. W. Goodwin and D. G. Seiler, Phys. Rev. B 27, 3451 (1983).   DOI
25 M. A. Ellabban, G. Mandula, and R. A. Rupp, SPIE 4607, 327 (2002).
26 E. Perez-Enciso and S. Vierira, Phys. Rev. B 57, 13359 (1998).
27 F. Lado, Phys. Rev. A 2, 1467 (1970).   DOI
28 T. Karasudani, K. Nagano, and H. Mori, Progr. Theor. Phys. 61, 850 (1978).