DOI QR코드

DOI QR Code

Variation of Local Coercivity Distribution in CoCrPt Alloy Films with Pt Composition

Pt 함량에 따른 CoCrPt 합금박막의 국소보자력 분포 변화

  • 임미영 (한국과학기술원 물리학과 및 스핀정보물질연구단) ;
  • 최석봉 (한국과학기술원 물리학과 및 스핀정보물질연구단) ;
  • 신성철 (한국과학기술원 물리학과 및 스핀정보물질연구단)
  • Published : 2002.02.01

Abstract

The local coercivity distribution of CoCrPt alloy films prepared by dc magnetron sputtering has been investigated by means of a magneto-optical microscope magnetometer (MOMM) capable of simultaneously measuring the local properties on 400 nm spatial resolutions. Serial samples of CoCrPt alloy films were prepared with the Pt composition of a range from 6 to 28 at. %. We find that the local coercivity distribution crosses over from Gaussian to non-Gaussian distribution in CoCrPt alloy films with increasing Pt composition, with increasing trends in the width of the distribution as well as the average local coercivity. Transmission electron microscopy (TEM) studies reveal that our findings are closely correlated with the dependences of the grain size distribution and its average size on Pt concentration.

CoCrPt 합금박막의 국소보자력 분포를 400nm공간분해능으로 8000개의 국소영역을 동시에 측정할 수 있는 광자기 현미경 자력계로 관찰하였다. 시료들은 dc 마그네트론 스퍼터링 방식으로 Pt 함량을 6 at.%에서 28 at.%로 변화시키며 제작되었다. Pt 함량이 증가함에 따라 ,국소보자력 분포가 정규분포에서 비정규분포로 변화하며 국소보자력 분포폭이 증가함을 발견하였다. 투과전자현미경으로 관찰한 미세구조를 분석한 결과는 국소보자력 분포 변화가 결정립의 크기 분포 및 평균크기 변화와 깊이 연관되어 있음을 나타내었다.

Keywords

References

  1. J. Appl. Phys. v.85 N. Honda;S. Yanase;K. Ouchi https://doi.org/10.1063/1.370020
  2. Appl. Phys. Lett. v.76 G. Wastbauer;G. D. Skidmore;C. Merton;J. Schmidt;E.D. Dahlberg;J. Skorjanec https://doi.org/10.1063/1.125837
  3. IEEE Trans. Magn. v.13 S. Iwasaki;Y. Nakamura https://doi.org/10.1109/TMAG.1977.1059695
  4. J. Appl. Phys. v.67 M. Sagoi;T. Inoue https://doi.org/10.1063/1.345162
  5. J. Magn. Magn. Mater. v.176 T. Keitoku;J. Ariake;N. Honda;K. Ouchi;S. Iwasaki https://doi.org/10.1016/S0304-8853(97)00577-5
  6. IEEE Trans. Magn. v.35 M. Futamoto;Y. Hirayama;N. Inaba;Y. Honda;K. Ito;A. Kikugawa;T. Takeuchi https://doi.org/10.1109/20.800989
  7. J. Magn. Magn. Mater. v.202 O. Kitakami;N. Kikuchi;S. Okamoto https://doi.org/10.1016/S0304-8853(99)00368-6
  8. Appl. Phys. Lett. v.69 L. Tang;L.L. Lee;D.E. Laughlin;D.N. Lambeth https://doi.org/10.1063/1.117382
  9. J. Magn. Magn. Mater. v.168 N. Inaba;T. Yamamoto;Y. Hosoe;M. Futamoto https://doi.org/10.1016/S0304-8853(96)00681-6
  10. J. Appl. Phys. v.87 Y. Xu;J.P. Wang;Y. Su https://doi.org/10.1063/1.372903
  11. J. Appl. Phys. v.79 Y. Matsuda;Y. Yahisa;J. Inagaki;A. Ishikawa https://doi.org/10.1063/1.361322
  12. J. Appl. Phys. v.87 J. Zou;B. Lu;T. Leonhardt;D.N. Lambeth https://doi.org/10.1063/1.372869
  13. Phys. Rev. B v.62 S. B. Choe;S. C. Shin https://doi.org/10.1103/PhysRevB.62.8646
  14. Appl. Phys. Lett. v.78 S. B. Choe;S. C. Shin https://doi.org/10.1063/1.1354664
  15. 한국과학기술원 박사학위논문 김진흥
  16. J. Appl. Phys. v.88 S. B. Choe;S. C. Shin https://doi.org/10.1063/1.1288777
  17. J. Appl. Phys. v.87 N. Inaba;M. Futamoto https://doi.org/10.1063/1.372867
  18. Phys. Rev. B v.57 S. B. Choe;S. C. Shin https://doi.org/10.1103/PhysRevB.57.1085
  19. J. Magn. Magn. Mater. v.200 G. C. Hadjipanayis https://doi.org/10.1016/S0304-8853(99)00430-8