• Title/Summary/Keyword: Magneto-absorption

Search Result 14, Processing Time 0.026 seconds

The Evaluation of Shock Absorption Performance of Magneto-Rheological Elastomer Through the Drop Impact Test (낙하 충격 실험을 통한 자기유변탄성체의 충격 흡수 성능 평가)

  • Joeng, Kyeong Sik;Lee, Chul Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.92-93
    • /
    • 2013
  • In this study, Shock Absorption performance of Magneto-rheological elastomer(MRE) is identified through the drop impact test. Magneto-rheological materials are divided into two groups by MR fluid in fluid state and MR elastomer in solid state like rubber. The stiffness characteristics of Magneto-rheological material can be changed as magnetic field is applied. The impact loads in MR elastomer were measured under weight of impactor. Experiment results are shown through the experiments to confirm the effect of shock absorption of MR elastomer. Thus, the MR elastomer can be applied to shock absorber used in area that shock occurs.

  • PDF

Inter Landau Level Optical Absorption in Graphene Under Ultra-high Magnetic Field

  • Saito, H.;Nakamura, D.;Takeyama, S.;Kim, Yong-Min;An, K.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.360-360
    • /
    • 2012
  • Graphene shows diverse novel physical properties arising from its peculiar electronic states, so called Dirac electrons. Especially, effect of magnetic field is very unique, exhibiting exotic Landau level (LL) splitting. LLs are substantially modified by spins of Dirac electrons and pseudo-spins. The degeneracy of LLs is lifted to show splitting by electron-electron interaction and by the Zeeman effect. We investigated the magneto-optical absorption of graphene subjected to ultra-high magnetic field. Samples were prepared by the CVD method deposited on GaAs and Quart substrate. We have confirmed existence of graphene on each substrate by the micro-Raman spectroscopy. Next, we conducted magneto-absorption measurements in magnetic field up to 120 T by the single-turn coil (STC) method. We could observe absorption peak at 65 T and 100 T, respectively, probably arising from the LL inter-band transitions.

  • PDF

Design of a Non-Invasive Blood Glucose Sensor Using a Magneto-Resonance Absorption Method (자기공명흡수법에 의한 무혈혈당측정기의 디자인)

  • Kim Dong-Kyun;Won Jong-Hwa;Potapov Sergey N.;Protasov Evgeniy A.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.33-38
    • /
    • 2005
  • In this paper, the sensing unit of a non-invasive blood glucose sensor for home users, using a magneto-resonance absorption method, have been designed and manufactured. The sensor is capable of non-invasively determining blood glucose levels through measuring the 1H spin-lattice relaxation time in human body, The comparison of initial models, with different dimensions and shapes, for the sensing unit has led us to select the materials of the final model, which has adequate size and weight for home use. Through the design optimization using the FEM model, the dimension of final model has been determined to satisfy the required strength and uniformity of the magnetic field in the detecting area.

Enhancement of Magneto-Optic Figure of Merit of Bi:YIG Films in Blue Wavelengths by La Substitution

  • Lee, Euibok;Jaekyong Cho
    • Journal of Magnetics
    • /
    • v.2 no.2
    • /
    • pp.46-49
    • /
    • 1997
  • This paper reports the first success in enhancement of the magneto-optic figure of merit of garnet films in blue wavelengths. The maximum of the absolute value of the Faraday rotation angle observed at about 500 nm for the films with no La substitution shifted toward shorter wavelength as La content increased, that leads the increase of the absolute value of the Faraday rotation angle in the wavelengths shorter than about 480 nm. The optical absorption coefficient at the wavelengths shorter than 500 nm decreased as La content increased. As a result the magneto-optic figure of merit increased in the wavelengths shorter than 470 nm as La content increased and was about two times larger for the film with La content of 0.6 in formular unit compared to that of the film without La substitution. This might be attributed to the shift of the centers of the charge transfer and crystal field transitions by La substitution.

  • PDF

Extraordinary Optical Transmission and Enhanced Magneto-optical Faraday Effect in the Cascaded Double-fishnet Structure with Periodic Rectangular Apertures

  • Lei, Chengxin;Man, Zhongsheng;Tang, Shaolong
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.134-140
    • /
    • 2020
  • A significant enhancement of the magneto-optical Faraday rotation and extraordinary optical transmission (EOT) in the cascaded double-fishnet (CDF) structure with periodic rectangular apertures is theoretically predicted by using the extended finite difference time domain (FDTD) method. The results demonstrate that the transmittance spectrum of the CDF structure has two EOT resonant peaks in a broad spectrum spanning visible to near-infrared wavebands, one of them coinciding with the enhanced Faraday rotation and large figure of merit (FOM) at the same wavelength. It is most important that the resonant position and intensity of the transmittance, Faraday rotation and FOM can be simply tailored by adjusting the incident wavelength, the thickness of the magnetic layer, and the offset between two metallic rectangular apertures, etc. Furthermore, the intrinsic physical mechanism of the resonance characteristics of the transmittance and Faraday rotation is thoroughly studied by investigating the electromagnetic field distributions at the location of resonance. It is shown that the transmittance resonance is mainly determined by different hybrid modes of surface plasmons (SPs) and plasmonic electromagnetically induced transparency (EIT) behavior, and the enhancement of Faraday rotation is mostly governed by the plasmonic electromagnetically induced absorption (EIA) behavior and the conversion of the transverse magnetic (TM) mode and transverse electric (TE) mode in the magnetic dielectric layer.

Observation of the Electromagnetically Induced Transparency and Dispersion-like Structure in Trapped Cs Atoms

  • Kim, Kyoung-Dae;Kwon, Mi-Rang;Kim, Jung-Bog;Moon, Han-Seb
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.131-135
    • /
    • 2001
  • We report experiemtnal results demonstrating the electromagnetically induced transparency (EIT) in trapped Cs atoms. EIT occurs at the Λ-type configuration where the re0-pumping laser simultaneously plays a role as the coupling laser in the presence of a magneto-optical trapping and weak magnetic fields. Dependences of EIT signal on both the intensity and the detuning of the coupling laser were investigated. Linear absorption spectra for cold cesium atoms in the magneto-optical trap have been observed and shown the pronounced dispersion-like structure with sub-natural linewidth of 1 MHz due to the cooling laser.

An Experimental Study on a Magneto-Rheological Fluid Damper for Structural Control Subject to Base Excitation (지반 기진력을 받는 구조물의 진동제어를 위한 자기유변 감쇠기의 실험적 연구)

  • 김병현;정종안;문석준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.767-773
    • /
    • 2004
  • Semi-active control systems have attracted a great deal of attention in recent years, because they offer the adaptability of active devices without requiring large Power sources. One of the most Promising semi-active devices proposed for structural control is magneto-rheological fluid dampers (MR damper). In this paper, an MR damper having the capacity of about 1 ton was designed and fabricated. and series of tests were performed to grasp the fundamental Performance characteristics of it. It was also applied to a 6-story steel structure under random excitation and 3-different seismic excitations for the confirmation of its validity on structural vibration absorption. Through this study, the techniques and know-hows for MR damper production were acquired.

A Study on the Detection Characteristics of the Magneto-Plethysmography According to Fluid Properties (유체의 성질에 따른 자계용적맥파의 검출 특성에 관한 연구)

  • Kim, Sang-Min;Lee, Kang-Hwi;Lee, Seong-Su;Lee, Hyeok-Jae;Lee, Byoung-Hun;Kim, Kyeoung-Seop;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.946-953
    • /
    • 2018
  • Photo-plethysmography (PPG), which measures changes in the peripheral blood flow of a human body using difference in absorption rate of light, is a measurement method that is studied and used in clinical and various applications due to its simple circuit configuration and measurement convenience. Magneto-plethysmography (MPG), which is newly developed by our team, is a method of measuring changes in the conductivity of biological tissues by using a eddy current induced by a time-varying magnetic field, and is not subject to optical interference. In this study, we investigated the detection characteristics of MPG according to the change of the conductivity of the object and fluid to be measured by simultaneously measuring PPG and MPG. In order to control the speed of fluid known in advance, a blood flow simulator was implemented and used. The fluid used in the experiment was general mineral water and physiological saline (0.9% NaCl) solution. Experimental results show that the amplitude change of the measured PPG was 0.3% in normal water and saline solution, and that of MPG was 77.3%. Therefore, it is considered that the magneto-plethysmography (MPG) has a strong correlation with the conductivity of the fluid.

Electron Spin Resonance Investigation of Fe3+ in Crystalline LiNbO3 Under the Polarized External Radiation

  • Park, Jung-Il;Cheong, Hai-Du
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.92-97
    • /
    • 2013
  • We study the electron spin resonance line-width (ESRLW) of $Fe^{3+}$ in crystalline $LiNbO_3$ ; the ESRLW is obtained using the projection operator method (POM) developed by Argyres and Sigel. The ESRLW is calculated to be axially symmetric about the c-axis and is analyzed by the spin Hamiltonian with an isotopic g factor at a frequency of 9.5 GHz. The ESRLW increases exponentially as the temperature increases, and the ESRLW is almost constant in the high-temperature region (T>8000 K). This kind of temperature dependence of the ESRLW indicates a motional narrowing of the spectrum when $Fe^{3+}$ ions substitute the $Nb^{5+}$ ions in an off-center position. It is clear from this feature that there are two different regions in the graph of the temperature dependence of the ESRLW.

Statistical Studies on the Physical Parameters and Oscillations of Sunspots and Flares

  • Cho, Il-Hyun;Cho, Kyung-Suk;Kim, Yeon-Han
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.41.2-41.2
    • /
    • 2016
  • We perform three statistical studies on the physical properties and oscillations in the confined plasma such as a photospheric sunspot and confined coronal loop. From the statistical studies on the sunspot umbra and its oscillation, we find that (1) the total magnetic flux inside the umbra for the three groups increases proportionally with the powers of the umbral area and the power indices in the three groups significantly differ from each other; (2) the three groups have different characteristics in their umbral area, intensity, magnetic field strength, and Doppler velocity as well as their relationships; (3) the mean frequency of the umbral oscillations increases with the umbral mean magnetic field strength and height; (4) the time delay of the core intensity of Fe I absorption line relative to the continuum which are de-convolved with the frequency range higher than 3.5 mHz is mostly positive, implying that the photospheric umbral oscillations are likely upwardly propagating; (5) the umbral mean plasma beta ranges approximately 0.6-1.1 and does not vary significantly from pores to mature sunspots. From the comparative study on the quasi-periodic pulsations (QPPs) in the solar and stellar flares, (6) we find that the power index of the periods scaling the damping times observed in the stellar QPPs is consistent with that observed in the solar QPPs, suggesting that physical mechanisms responsible for the stellar QPPs are likely the magneto-hydrodynamic oscillation of solar coronal loops.

  • PDF