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Abstract  We study the electron spin resonance 

line-width (ESRLW) of 3Fe  in crystalline 

3LiNbO ; the ESRLW is obtained using the 

projection operator method (POM) developed by 

Argyres and Sigel. The ESRLW is calculated to be 

axially symmetric about the caxis  and is 

analyzed by the spin Hamiltonian with an isotopic g  

factor at a frequency of 9.5 GHz . The ESRLW 

increases exponentially as the temperature increases, 

and the ESRLW is almost constant in the 

high-temperature region ( 8000T  K ). This kind of 

temperature dependence of the ESRLW indicates a 

motional narrowing of the spectrum when 3Fe  

ions substitute the 5Nb  ions in an off-center 

position. It is clear from this feature that there are 

two different regions in the graph of the temperature 

dependence of the ESRLW. 

 

Keywords Electron spin resonance, Projection 

operator method, Magneto-optical transition, 

Absorption power, Line-width,   ion 

 

 

Introduction 

 

Electron spin resonance line-width (ESRLW) 

spectroscopy is a technique based on the microwave 

absorption in unpaired electron spins in the presence 

of the polarized external radiation field. It is a very 

powerful and sensitive tool for studying the 

electronic structures, lattice defects, and magnetic 

phases present in a material. The study of 

magneto-optical transitions of electron spin in 

crystals has almost always been restricted to a 

frequency range between far infrared radiation and 

visible light involving the quantum transitions in 

ESR
1 5

.  

3LiNbO
 is ferroelectric at room temperature and has 

a single phase transition to a paraelectric phase at 

1473 K , approximately 57 K  below the melting 

temperature. It has attracted sustained scientific and 

technical interest, mainly due to its desirable 

nonlinear optical properties. Doping with transition 

metal and rare earth elements can enhance 

electro-optical coefficients and the photorefractive 

properties. Photorefractive materials are used for 

holographic data storage and promise high storage 

densities with short access times. Significant 

advances have been made toward overcoming 

problems of sensitivity and volatile readout using 

near stoichiomeritic 3LiNbO
 doped with Fe . ESR 

studies on Fe -doped 3LiNbO
 LiNbOcrystals have 

been reported by several authors: Taketa et al.
6
,  

 



Jung-Il Park et al / J. Kor. Magn. Reson., Vol. 17, No. 2, 2013 93 

 

 

 

Petrov
7

, and Rexford et al.
8
. In addition to these 

ESR studies, many other experiments such as NMR, 

NQR, the Mössbauer effect, optical absorption, and 

magnetic properties have been performed.  

ESR can readily detect 
3Fe  ions, the main features 

of the spectra can be analyzed in terms of a spin 

Hamiltonian of the form
9
   

 

containing electronic Zeeman and zero field  

splitting (ZFS) terms expressed using Stevens 

operators,the scaling factors relevant here take the 

values 
2 1/ 3f  . Where B  is the applied 

static magnetic field, g  is the spectroscopic 

splitting tensor, S  is the electron spin operator, 
q

kb  denotes a ZFS parameter ( k  rank, q  

component) associated with the extended Stevens 

operator q

kO . The spin and site symmetry of the 

paramagnetic center dictate which terms are nonzero. 

For 5 / 2S   centers only terms 2,4k   with 

k q k   , are allowed. The Laue class of the 

center point group imposes further constraints. The 

two trigonal classes are relevant for the discussion of 

previous ESR studies, both allow nonzero terms 0

2b , 

0

4b , 3

4b , and 
3

4b .   

3LiNbO
 structure at temperature below its 

ferroelectric Curie temperature (approximately 

1210 C ) consist of planar sheet of oxygen atoms in 

a distorted hexagonal close-packed configuration. 

The octahedral interstices formed in this structure are 

one-third filled by lithium atoms, one-third filled by 

niobium atoms, and one-third vacant. In the c  

direction, the atoms occur in the interstices in the 

following order:…, Nb , vacancy, Li , Nb , 

vacancy, Li ,…. In the paraelectric phase above the 

Curie temperature, the elastic force of the crystal 

become dominant and force the lithium and niobium 

ions into new positions, as illustrated in Fig. 1.     

 

Figure 1. Schematic representation of ionic displacement 

in 
3LiNbO  ferroelectric phase.. 

 

In this work, first we review the theory presented 

earlier and change the formula into an 

easy-to-deal-with form for ferroelectric materials. 

Next we shall calculate the ESRLW, for the ESR of 

3Fe  in 3LiNbO
, the ESRLW is obtained using the 

projection operator method (POM) developed by 

Argyres and Sigel. On the basis of numerical 

calculation, we will analyze the absorption power and 

the temperature dependence of the ESRLW at a 

frequency of 9.5 GHz in polarized external radiation 

field. Finally we will give discussion and concluding 

remarks.   

 

  

Review of theory 

 

There have been numerous methods for the 

calculation of the ESRLW. Using the density 

operator method, Arora and Spector obtained a 

formula for various resonant systems including 

acoustic phonons. Suzuki presented a formula for 

electron systems using the resolvent superoperator 

method
12

. Peeters and Devreese presented a theory 

using the memory function and applied it to study 

various two- and three-dimensional electron 

systems
9 11

. Shibata and Ezaki developed a new type  

2,4

( , , )
k

q q

f k k k x y z

k q k

H H B g S f b O S S S
 

      
,f spH H 

0 2

2 3 ( 1),zO S S S  

0 4 2 2 2 2

4 35 30 ( 1) 25 6 ( 1) 3 ( 1) ,z z zO S S S S S S S S S       

3 3 3 3 3

4 { ( ) ( ) } / 4,z zO S S S S S S       (1) 
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of expansion method for determining 

time-correlation function, obtained kinetic 

coefficients using Mori’s projection method
13

. The 

applied this method for studying magnetic impurity 

systems. Among the above mentioned methods, we 

focus on the POM approach of Argyres and Sigel
14

. 

By using this method, we succeeded in formulating a 

response theory, which includes the Kubo
15

 theory 

as the lowest-order approximation
16 21

. The ESRLW 

derived is similar to those obtained by other methods. 

Furthermore, the amount of calculation steps 

involved in the method of Argyres and Sigel is 

considerably lesser than that required for any other 

method. For 3LiNbO
 in the presence of a 

perpendicular static magnetic field, the ESR 

spectrum, up to a constant factor, can be expressed as  

 

where Re ( )ESR   and Im ( )ESR   are the 

real and the imaginary parts respectively, of the ESR 

spectrum. The correction to the resonance field can 

then be determined accurately from the equation 

Re ( ) 0ESR

z      because 

Im ( )ESR   is slowly varying function of the 

angular frequency.   

We introduce the annihilation and creation operators, 

ma
 and 

ma


, for an eigenstate of Hamiltonian. 

We can express the commutator in terms of these 

operators, as shown below  

 
 

There may be various methods for evaluating Eq. (3) 

that yield similar results; however, the evaluation is 

more effectively achieved using the POM proposed 

by Argyres and Sigel, which is a method based on the 

equation of motion. Their theory seems to be quite 

general in the sense that it is based on rigorous 

formalism and the self-consistent projection 

technique. Following Argyres and Sigel, we define 

the projection operators by use of the following 

selection rule 

     , 1 ,
( )

m m

m m

X
P X P P


 

   

  

            (4) 

where P  is an Abelian inverse. We note that 

,P      0,P   
2 ,P P   and 

0P P  
, while we isolate 

( ) ( ) ( )R P R P R      and then 

operate with P  and P
 separately to obtain with 

the use of relations 

 
Thus, we obtain the expression for the quantity of 

interest ( )m mR  
 as follows 

 

Because we are interested in the spin Hamiltonian, it 

is convenient to introduce the Liouville operators 
fL  

and 
spL corresponding to 

fH and 
spH , respectively, 

i.e., 
f spL L L  with [ , ]f fL X H X and 

[ , ]sp spL X H X . We then note that ,fL     

0,fP L     and ( ) 0f m mL P X    ,following the 

definitions of 
fL  and P . We make use of the 

following relations 

 

 

  

 

System 

 

The ESRLW is characterized by the imaginary part 

of the equation for electron spin susceptibility 
2 2

"

0
0

( ) lim exp( ) [ (0), ( )] ,
4

e B

EAa

g
dt i t at t

Vh


    



  


  
 (8) 

(6) 1 ( )
( )

1.
( ) ( )

m m

P

m mm m m m

m m m m

R
L G P L

R
 




 

 
 

     

     

 
   

 
  

( ) ( ) ( ) ,P L P R P LP R         

( ) ( ) ( ) 0.P L P R P LP R        (5) 

 ( ) m m m m
EA

m t m a a a a  

       

 (3) 

  , ( ) ( ) ( ) ( ) m mEA
m

t m t m m t m m t m a a     

      



         

2 2

Im ( )
,

Re ( ) Im ( )

ESR

ESR ESR

z



   



 

 

          

( ) ( ) ,m m

m

P X X 
 

  



 

( ) ( ) ,m m

m

P X X 
 

  



 

( ) ( ) .f m m m mL         (7) 

(2) 

 ( ) ( ) ( ) .m m

m

m m m t m f f      



     
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where ( ) exp( )t iLt   , with L being the Liouville 

operator corresponding to the Hamiltonian of the 

system. We denote the sum of the spin matrix of the 

total electrons in the system as 
x yi     . For a 

polarized external radiation field and angular 

frequency   applied along the z  direction, the 

spin susceptibility delivered to the ferroelectric 

3LiNbO  crystals under the influence of a static 

magnetic field B  is given by 

 

 where “Re” denotes “the real part of”, ( )mf  , 

which is the Fermi-Dirac distribution function of the 

electron state m . We note that " ( ) 
 can be 

calculated as 

 

 

We consider the term ( ) ( ) ( )ESR ESR ESRiS W       , 

where the line-shift in ESR spectra is 

( ) Im ( )ESR ESRS   
   

and the ESRLW is 

( ) Re ( )ESR ESRW   
   

. Then we obtain the spin 

susceptibility as 

 

The absorption power delivered to the system is 

given by 

 

The amplitude 
0H  can be treated as the driving 

force of ESR. It determines the external frequency 

and the amplitude of the oscillating component of 

magnetization. The square of 2

0H , which is the 

modulus of the ESR signals, controls the absorption 

power. In order to obtain the ESRLW, the energy 

terms can be expressed as ( )E          
 

and here, 

 
 

 

We separate the energy terms in the denominator of 

the ESRLW, and rewrite the elements of the ESRLW 

as Eq. (14) is similar to Sawaki’s result 22 , which is 

based on the Stark ladder representation. However, 

our formula uses more terms for expressing the 

Fermi-Dirac distribution. The physical interpretation 

of Eq. (14) is as follows. The above mentioned terms 

represent the transition process of the electron spin 

from a state ( )m m   to ( )m m  . Here, the 

distribution function represents as the condition for 

the transition process and  ( ) 1 ( )m mf f    

represents that for the transition m m  . The 

energy term E

  represents enforces energy 

conservation. 

The ESRLW is calculated to be axially symmetric 

about the z axis  and analyzed in terms of the spin 

Hamiltonian with the paramet 1.996g  , 2.004g   

0

2 / 4.932b h  GHz , 0

4 / 0.155b h   GHz , 

3

4 / 3.5b h  GHz , and 3

4 / 0.84b h   GHz 23 . The 

most important features are six intense resonances 

corresponding to the central transitions, a splitting of 

the six central resonances that increases with 

increasing magnetic field strength. Six strong 

absorptions, corresponding to the 
1 1
2 2
, ,m m       transitions, are observed. 

Hence, the 5 2m /   component appears at low 

magnetic fields and the 5 2m /   component 

appears at high fields. A spreading of the other 

allowed transitions 3
2
, m   5

2
, m  , 

1
2
, m   3

2
, m  , 3

2
, m   1

2
, m  , and 

5
2
, m   3

2
, m  . 

We obtain the analytical eigenenergies 

( ) ( )
.m m

m

m m

f f
F

 


 
 

 


 

 (13) 

2 "

0( ) Re ( ) .ESRP H  
    (12) 

 
" 2 2

2 2
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4 ( ) ( )

ESR

z m m

z
e B

ESR ESR

z

W dk f f

g
V S W
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
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
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


 



   
        



(11) 

 
2 2

"

, ,

( ) ( )

( ) .
4 ( )

z m m

e B

ESR
m m m m m m m

EA

dk f f v
g

V H H i 
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

 
   



   




       




     




2 2
"

0
0

( ) lim Re { ( ) ( )} exp( ) ( ) ,
4

e B
m m

a
m

g
f f m m dt i t at m t m

Vh


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

    



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(9) 

m m m
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  
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1
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m

z
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
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 


 
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 
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E E E
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 
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Discussion and conclusions 

 

We have reviewed the theory concerning the POM 

for magneto-optical transitions in crystalline 

3LiNbO , which was introduced earlier in terms of a 

conventional series representation. The theory was 

applied to examine the temperature dependence of 

the ESRLW of the 
3LiNbO . Through numerical 

calculations, we studied the dependence of 

absorption power (peak-to-peak) on the magnetic 

field for -5/2 allowed transitions, as shown in Fig. 2.  

 

 
Figure 2. Magnetic field dependence of the absorption 

power of the 
3Fe  ion for allowed transition from 

5 / 2  to 5 / 2  at a frequency of 9.5 GHz . 

 

The spectrum is inhomogeneous broadened by the 

magnetic dipole-dipole interaction. It should be noted 

that the absorption power are Lorentzian.  

We can see from Fig. 3 that the ESRLW increases 

exponentially as the temperature increases, and the 

ESRLW is almost constant in the high-temperature 

region ( 8000T  K ). This feature clearly shows that 

there are two different regions in the graph of the 

temperature dependence of the ESRLW: (i) a 

low-temperature region, in which an exponential 

increase in the ESRLW is observed with increasing 

temperature, and (ii) a high-temperature region, in 

which a sudden increase in the ESRLW is observed. 

T h e  E S R LW  i s  b a r e l y  a f f e c t e d  i n  t h e 

high-temperature region because there is no  

correlation between the resonance fields and the 

distribution function. This kind of temperature 

behavior of the EPRLW indicates a motional 

narrowing of the spectrum, when 3Fe  ions 

substitute the 5Nb  ions in an off-center position, 

and thus, there can be fast jumping of dipoles 

between several symmetrically equivalent 

configurations.  

 
Figure 3. Temperature dependence of the ESRLW of 

3Fe  at a frequency of 9.5 GHz . 

 

We believe that the temperature dependence ESRLW 

is caused by the spin lattice relaxation time ( ).  

Further, 1T   implies that the relaxation occurs 

through transfer of energy from a single spin to a  

single excitation mode of the lattice, which has 

essentially the same frequency as the splitting of the 

levels. This result is quite unexpected because at 

these high-temperatures, two phonon processes (i.e., 

Raman process) are known to dominate.  

We conclude that the calculation process presented in 

this work is useful for studying the magneto-optical 

transitions in 
3LiNbO  crystals. Furthermore, if the 

continued fraction methods are used in formulating 

the ESRLW function, better numerical results may be 

obtained 
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