Browse > Article
http://dx.doi.org/10.6564/JKMRS.2013.17.2.092

Electron Spin Resonance Investigation of Fe3+ in Crystalline LiNbO3 Under the Polarized External Radiation  

Park, Jung-Il (Nano-Physics and Technology Laboratory, Department of Physics, Kyungpook National University)
Cheong, Hai-Du (Division of Liberal Arts, Hanbat National University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.17, no.2, 2013 , pp. 92-97 More about this Journal
Abstract
We study the electron spin resonance line-width (ESRLW) of $Fe^{3+}$ in crystalline $LiNbO_3$ ; the ESRLW is obtained using the projection operator method (POM) developed by Argyres and Sigel. The ESRLW is calculated to be axially symmetric about the c-axis and is analyzed by the spin Hamiltonian with an isotopic g factor at a frequency of 9.5 GHz. The ESRLW increases exponentially as the temperature increases, and the ESRLW is almost constant in the high-temperature region (T>8000 K). This kind of temperature dependence of the ESRLW indicates a motional narrowing of the spectrum when $Fe^{3+}$ ions substitute the $Nb^{5+}$ ions in an off-center position. It is clear from this feature that there are two different regions in the graph of the temperature dependence of the ESRLW.
Keywords
Electron spin resonance; Projection operator method; Magneto-optical transition; Absorption power; Line-width; ion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. T. smith and F. S. Welsh J. Appl. Phys. Lett. 42, 2219 (1971).
2 D. B. Fraser and A.W. Warner J. Appl. Phys. 37, 3853 (1966).   DOI
3 H. C. Huang, J. D. Knox, Z. Turski, R. Wargo and J. J. Hanak Appl. Phys. Lett. 24, 109 (1974).   DOI
4 F. R. Gfeller J. Appl. Phys. Lett. 29, 655 (1976).   DOI
5 I. P. Kaminow, J. R. Carruthers, E. H. Turner and L. W. Stulz J. Appl. Phys. Lett. 22, 540 (1973).   DOI
6 T. Takeda, A. Watanabe, and K. Sugihara Phys. Lett., A 27, 14 (1968).   DOI   ScienceOn
7 M. P. Petrov Fiz. Tver. Tela, 10, 3254 (1968).
8 D. G. Rexford, Y. M. Kim, and H. S. Story J. Chem. Phys. 52, 860 (1970).   DOI
9 W. Xiaoguang, F. M. Peeters and J. T. Devreese Phys. Rev. B 34, 8800 (1986).   DOI   ScienceOn
10 X. Wu, F. M. Peeters and J. T. Devreese Phys. Rev. B. 40, 4090 (1989).   DOI   ScienceOn
11 X. J. kong, C. W. Wei and S. W. Gu Phys. Rev. B 39, 3230 (1989).   DOI   ScienceOn
12 A. Suzuki and D. Dunn Phys. Rev. B 25, 7754 (1982).   DOI
13 H. Mori Progr. Theor. Phys. 34, 399 (1965).   DOI
14 P. N. Argyres and J. L. Sigel, Phys. Rev. Lett. 31, 1397 (1973).   DOI
15 R. Kubo J. Phys. Soc. Jpn. 12, 570 (1957).   DOI
16 J. I. Park, J. Y. Sug, and H. R. Lee J. Kor. Phys. Soc. 51, 623 (2007).   DOI   ScienceOn
17 J. I. Park, J, Y, Sug, and H. R. Lee J. Kor. Phys. Soc. 53, 776 (2008).   DOI   ScienceOn
18 J. Y. Sug Phys. Rev. B 64, 235210 (2001).   DOI   ScienceOn
19 J. I. Park J. Magnetics 17, 255 (2012).   DOI   ScienceOn
20 J. I. Park, H. R. Lee, and S. H. Lee Jpn. J. Appl. Phys. 51, 52402 (2012).   DOI
21 N. Sawaki J. Phys. C 16, 4611 (1983).   DOI   ScienceOn
22 D. J. Keeble, M. Loyo-menoyo, Y. Furukawa, and K. Kitamura Phys. Rev. B 71, 224111 (2005).   DOI   ScienceOn
23 J. I. Park, H. R. Lee, and H. K. Lee J. Magnetics 16, 108 (2011).   DOI   ScienceOn