• 제목/요약/키워드: Magnetizing Frequency

검색결과 59건 처리시간 0.023초

높은 전력밀도를 갖는 500 kHz 고주파 LLC 컨버터의 설계와 구현 (Design and Implementation of 500 kHz High Frequency LLC Resonant Converter for High Power Density)

  • 박화평;정지훈
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.51-58
    • /
    • 2015
  • In order to decrease the size of a switch mode power supply, high switching frequency can be an efficient way to reduce the size of passive components in the converter. In this paper, a 500-kHz high-frequency LLC resonant converter is proposed with an accurate design method of magnetizing inductance, as well as the relationship between the switching frequency and the size of the passive components. Simulation and experimental results are presented to verify the proposed methods and equations, including the temperature data of each passive and active device of the converter. Using those results, dominant power losses in the prototype converter under 500-kHz high-frequency operation are investigated, compared with the results from a 100-kHz converter. In addition, operating waveforms and power conversion efficiency will be shown to obtain design considerations for the high switching frequency LLC resonant converter.

저전도율 유체 측정에서 소형 전자기유량계의 신호 특성 (Flow Signal Characteristics of Small Scale Electromagnetic Flowmeter in Low Conductivity Fluid Measurement)

  • 임기원;정성수
    • 대한기계학회논문집B
    • /
    • 제40권9호
    • /
    • pp.613-620
    • /
    • 2016
  • 유체의 전도율(conductivity)이 전자기유량계의 특성에 미치는 영향을 평가하기 위해 소형 전자기 유량계를 설계 제작하였다. 유량계의 측정관(measuring tube)은 $4mm{\times}3mm$의 직사각형 단면을 가지며 길이는 9 mm이다. 전극은 직경이 1.5 mm인 점전극과 단면이 $2mm{\times}3mm$인 면전극으로 설계하였다. 코일의 열 발생에 영향을 미치는 자화주파수, 회전수 및 굵기를 변화시키면서 최적값을 찾았다. 최적화된 측정관은 자속밀도(magnetic flux density) 0.04 T (400 gauss)를 발생시키며 안정되고, 선형적인 유량신호를 얻을 수 있었다. 유량계를 특성을 평가하기 위해 중량식 유량계 교정 장치를 제작하였다. 유동율 범위는 최대 $1.17{\times}10^{-5}m^3/s$(700 cc/min)이며 ISO규격에 따라 유동량 결정의 불확도를 평가하였으며 크기는 0.06 % 이내이었다. 유체의 전도율은 $3-11{\mu}S/cm$ 사이에서 조절하였다.

Design Considerations of Resonant Network and Transformer Magnetics for High Frequency LLC Resonant Converter

  • Park, Hwa-Pyeong;Ryu, Younggon;Han, Ki Jin;Jung, Jee-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.383-392
    • /
    • 2016
  • This paper proposes the design considerations of resonant network and transformer magnetics for 500 kHz high switching frequency LLC resonant converter. The high power density can be effectively achieved by adopting high switching frequency which allows small size passive components in the converter. The design methodology of magnetizing inductance is derived for zero voltage switching (ZVS) condition, and the design methodology of the transformer and output capacitance is derived to achieve high power density at high operating frequency. Moreover, the structure of transformer is analyzed to obtain the proper inductance value for high switching operation. To verify the proposed design methodology, simulation and experimental results will be presented including temperature of passive and active components, and power conversion efficiency to evaluate dominant power loss. In addition, the validity of magnetics design will be evaluated with operating waveforms of the prototype converter.

High-Efficiency Non-contact Power Supply System

  • Zheng, Bin;Kwan, Dae-Hwan;Lee, Dae-Sik
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.233-235
    • /
    • 2005
  • Non-contact power supply (NCPS), as a clean and safe energy supply concept has been applying wildly. Comparing with the conventional transformer the non-contact transformer has a large air gap between the long primary winding and the secondary winding. Due to it, the non-contact transformer has increased leakage inductance and reduced magnetizing inductance. So the high frequency series resonant converter has been widly used on the non-contact power supply system for transferring the primary power to the secondary one, from what a high influence voltage can be gained on the secondry coil even though the large air gap exists. However, it still has the disadvantages of the load sensitive voltage gain characteristics when load is changing. In this paper, we propose a fuzzy logic controller to adjust the frequency of the inverter to track the resonat which is changing when the load is change.

  • PDF

Phasor Estimation Algorithm Based on the Least Square Technique during CT Saturation

  • Lee, Dong-Gyu;Kang, Sang-Hee;Nam, Soon-Ryul
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.459-465
    • /
    • 2011
  • A phasor estimation algorithm based on the least square curve fitting technique for the distorted secondary current due to current transformer (CT) saturation is proposed. The mathematical form of the secondary current during CT saturation is represented as the scaled primary current with magnetizing current. The information on the scaled primary current is estimated using the least square technique, with the measured secondary current in the saturated section. The proposed method can estimate the phasor of a fundamental frequency component during the saturated period. The performance of the algorithm is validated under various fault and CT conditions using a C400 CT model. A series of performance evaluations shows that the proposed phasor estimation algorithm can estimate the phasor of the fundamental frequency component with high accuracy, regardless of fault conditions and CT characteristics.

Numerical Analysis and Design of Moving Contactless High Power Transformer

  • Lee, Dong-Su;Jang, Dong-Uk;Kim, Hyung-Chul;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.423-426
    • /
    • 2011
  • This paper presents numerical analysis and design of high power contactless transformer with a large air-gap for moving on a guided linear track which is appropriate for high-speed train or MAGLEV. The system has the typical characteristics of large leakage inductance, small magnetizing inductance, and low coupling coefficients giving rise to lower power transfer efficiency, which have been compensated by the purposely-designed contactless transformer coupled with the resonant converter modulating with high switching frequency. In particular, the best model selected from the generated six design candidates has been applied for 3D Finite Element Analysis (FEA) investigating on iron loss to evaluate the overall system efficiency.

낮은 커플링 변압기를 갖는 개선된 고효율 공진 컨버터 (An improved high efficiency resonant converter with low coupling transformer)

  • 공영수;김은수;양승철;박진영;김종무;강도현;조정구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1166-1168
    • /
    • 2004
  • The high frequency series resonant converter has been widely used for the non-contact power supply system with the large air gap and the increased leakage inductance of the non-contact transformer. However. the high frequency series resonant converter has the disadvantages of high voltage gain characteristics in the overall load range due to the large air gap and the circulating magnetizing current. In this paper, unit voltage gain is revealed in the proposed three-level series-parallel resonant converter. The results are verified on the simulation results and the 5kW experimental prototype.

  • PDF

퍼지 알고리즘을 이용한 유도전동기 간접벡터제어기의 설계와 엘리베이터 속도제어 시스템의 응용 (Design of Indirect Vector Controller of Induction Motor using Fuzzy Algorithm and apply to the Speed Control System of Elevator)

  • 경제문;김훈모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.110-113
    • /
    • 2000
  • In general, speed control method of the elevator system has used motor pole change type or motor primary voltage control type. But it will change to vector control type in order to increase it's reliability, riding comfort and decrease material cost. It is the conception of vector control type in order to increase it's reliability, riding comfort and decrease material cost. It is the conception of vector control that primary current of the induction motor be controlled independently with magnetizing current(field current of DC motor) and torque current(armature current of DC motor). In this paper, by analyzing the effect of the time constant variation of rotor of the induction motor on the slip frequency type indirect vector control, a drive system for the motor will be constructed using a fuzzy slip frequency type indirect vector controller with fuzzy control method for estimating the vector time constant in the slip frequency type indirect vector control. The goal of this study is to enabling even more efficient speed control by constructing on elevator driver based on the newly developed drive system.

  • PDF

Frequency-Domain Circuit Model and Analysis of Coupled Magnetic Resonance Systems

  • Huh, Jin;Lee, Wooyoung;Choi, Suyong;Cho, Gyuhyeong;Rim, Chuntaek
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.275-286
    • /
    • 2013
  • An explicit frequency-domain circuit model for the conventional coupled magnetic resonance system (CMRS) is newly proposed in this paper. Detail circuit parameters such as the leakage inductances, magnetizing inductances, turn-ratios, internal coil resistances, and source/load resistances are explicitly included in the model. Accurate overall system efficiency, DC gain, and key design parameters are deduced from the model in closed form equations, which were not available in previous works. It has been found that the CMRS can be simply described by an equivalent voltage source, resistances, and ideal transformers when it is resonated to a specified frequency in the steady state. It has been identified that the voltage gain of the CMRS was saturated to a specific value although the source side or the load side coils were strongly coupled. The phase differences between adjacent coils were ${\pi}/2$, which should be considered for the EMF cancellations. The analysis results were verified by simulations and experiments. A detailed circuit-parameter-based model was verified by experiments for 500 kHz by using a new experimental kit with a class-E inverter. The experiments showed a transfer of 1.38 W and a 40 % coil to coil efficiency.

태양광 발전 시스템을 위한 LLC 직렬공진컨버터 적용 무접점 전원장치 (A Contact-less Power Supply using LLC resonant converter for Photovoltaic Power Generation System)

  • 이현관;이기식;강성인;공영수;김은수;김윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.347-350
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer. Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without any auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transfonner are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

  • PDF